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Abstract

A practical case study for estimation of magnesite grade in JelSava deposit in Slovakia is presented. The
studied part of the deposit is a new level 220, vertically extended to the level 323, presently being exploited.
Based on exploratory data analysis, the distributions of studied variables were modelled using Gaussian
anamorphosis and transformed into normal distribution. The structural analysis and consequential variography
was made for transformed variables in 3D space, resulted in a complex structural model of the spatial variability.
Following the structural model, the average grades were simulated for the projected selective mining units
(SMU) 16x16x6 m (panels). For recoverable reserves estimation purposes, the raw variables were transformed
into Gaussian space for SMU volume as well as discretizating blocks 4x4x6 m inside each SMU. The results of
the previous simulations and the change of support models were used for recoverable reserves estimation by
uniform conditioning for series of different cut-offs.

Abstrakt

Predkladany c¢lanok sa zaobera nelinedarnym modelovanim vytazitelnych zasob magnezitovej rudy
loziska Jelsava. Studovanou ¢astou loziska bol doposial’ netazeny obzor 220 po vyssie tazeny obzor 323. Na
zaklade Statistickej analyzy prieskumnych dat boli v prostredi ISATISTM modelované distribucie jednotlivych
Studovanych premennych a transformované do normalneho rozdelenia Gaussovou anamorfézou. Pre takto
transformované premenné bola urobena Strukturna analyza a variografia v trojrozmernom priestore. Na zaklade
vysledného Struktarneho modelu boli simulované priemerné obsahy jednotlivych premennych pre velkosti
projektovanych tazobnych jednotiek 16x16x6 m (SMU). Hodnoty pdvodnych premennych boli transformované
do Gaussovho rozdelenia pre dané SMU, ako aj pre velkosti diskretizacnych blokov 4x4x6 m obsiahnutych v
kazdej SMU. Vysledky ziskané simulovanim priemernych obsahy jednotlivych premennych a Gaussovej
anamorfozy pre jednotlivé velkosti nositel'a informacie boli pouZité pre samotny vypocet vytazitelnych zasob
metodou rovnomerného podmienovania na zaklade rozdielnych podmienok bilan¢nosti.
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INTRODUCTION

Geostatistics, in combination with other statistical methods, provides a wide range of mathematical tools
that can be used for estimations that are based on the assumption that a mineralized phenomenon at one point in
space can be considered as one realization of a random process. A set of spatially distributed realisations is then
considered result of a random spatial process. Nowadays geostatistics can not be ignored when dealing with the
reserves evaluation. It is now of common use in a large number of companies from the exploration to the
production stages [3].

A good knowledge of tonnage and grades within an orebody is essential in order to assess the economic
feasibility of putting the mine, or its part, into production. An orebody is always made of several types of ore and
waste minerals. Separating the ore from the waste during exploration and mining is almost impossible to achieve
for many reasons: the geological boundaries between ore and waste is seldom clear in nature, and conversely,
boundaries defined on economic criteria, or cut-off grades, do not even match any geological reality [4]. The real
grades of SMU are unknown during the exploitation of the mining. Therefore the decision to send the material to
the ore plant or to the waste plant is still taken from the estimated grade and not from true grade. As a
consequence it is not possible to avoid sending blocks to the wrong destination: rich block will end up on the
waste dump because they are estimated as poor and vice versa.
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1 PRESENTATION OF THE AVAILABLE DATA

Studied deposit is located 3.5 km NE of Jelsava (Fig. 1). Carbonate body has the directional length 4.5 km,
course NE — SW with inclination 55 — 60° to SE and maximal thickness 600 m. Magnesite area in the western
part of the deposit (Dubrava body) reaches a thickness of 70 — 80 m. This is proven in the inclined length 1500 m
and assembled in the lower part of carbonate body. The most intensive mineralization is in the middle part —
Mikova [9].

z,—-f"m PL
cz J N ~
S /
o

Vs magnesite KOSICE 7
I

deposit g * A
Jelsava

. BRATISLAVA H
AT 0 100 km

Fig. 1 JelSava deposit’s localization map.

The deposit has been extensively explored from surface deviated diamond drilling [18] and underground
exploration drives, cross-cuts and drilling fans. The sample database consists of a combination of diamond
drillhole samples (6214 cores), drilling fan samples (4593 cores) and channel samples (1646 samples). The final
database consists of the grade analyses for content of MgO [%], CaO [%] Fe,O; [%] and SiO, [%] together with
ID, X, Y and Z coordinates. The input data file for the geostatistical software ISATIS™ respected the line
structure of the drillholes, drives and cross-cuts. The situation with available data is shown in Fig. 2.

Fig. 2 3D visualization of available data.

2 EXPLORATORY DATA ANALYSIS

2.1 Statistical analysis

Because of the combination of different sample types, the first task of the exploratory data analysis consisted in
testing of data compatibility by F and t tests. Statistical analysis confirmed that the grade analyses of these
different sample types from different sampling campaigns come from the same parent population. Table 1 shows
some basic descriptive statistics.
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Tab. 1 Descriptive statistic of variables studied.

min max mean standard variance

variable number %] (%] (%] deviation [%] (%] skewness kurtosis

SiO, [%] 11964  0.01 76.80 1.38 3.31 10.95 7.9 98.93
Fe,0;3[%] 9766 024 997 3.54 0.78 0.62 -0.15 2.93
CaO [%] 11964  0.08 43.05 11.03 10.13 102.66 0.74 -0.99
MgO [%] 11964  4.08 50.02 35.28 8.73 76.15 -0.72 -0.92

2.2 Regularization

One prerequisite of data analysis is that the samples all represent an equal volume. This is called the support of
the sample [8]. It is very important in estimation to work with equal support (volume) samples. The
regularization is an essential phase of a study using 3D data and especially in the mining industry [13]. The idea
is that all the bases of geostatistics will consider each datum of the same importance, prior to assigning a weight
in the kriging process. This does not make sense if all the data do not represent the same amount of material. The
accepted way of ensuring equal support of all samples within domain being estimated is to compose the samples
into equal lengths [2]. The available data were measured on different support size by means of lengths of
samples, ranking from 0.3 m to 59 m, due to the preferential sampling of the high grade magnesite in carbonate.
Therefore it was necessary to create a replica of the initial data set where all the variables of interest in the input
file have been converted into composites of equal lengths. Because of line structure of the data set we used the
regularization on constant length 6 m which is the bench length for ascending horizontal slicing method of
mining. The minimal allowable length was 3 m, approximately equal to the average length of original samples.
The regularization resulted in avoiding the bias of preferential sampling of high grade zones. The following Fig.
3 shows experimental histograms of MgO grade before regularization and after it. From these two histograms it
is possible to see clearly the better representation of the statistical behaviour of the MgO contents where on the
histogram before regularization there is underestimated population of the low values of the MgO contents.
Conversely, histogram after regularization clearly shows two populations of the MgO contents - the low value
population of the MgO contents in dolomitic magnesite and the high value population of the MgO contents in
magnesite itself.
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Fig. 3 Experimental histogram of MgO content before regularization (on the left) and after it (on the right).

2.3 Correlation analysis

Except for the high negative correlation between MgO and CaO (-0.97) there is also apparent correlation
between these two variables and Fe,O; variable (Fig. 4) — positive one for MgO/Fe,O; (0.66) and negative for
CaO/ Fe,O5 (-0.72). Because this variable is undersampled, those relationships were used for multivariate
approach in recoverable reserves modelling.
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Fig. 4 Correlation analysis of the studied variables.

3 GEOSTATISTICAL MODELLING OF RECOVERABLE RESERVES

3.1 Why non-linear approach?

Estimation of recoverable reserves calls for the aspects of the mining project. The most important one is the
volume on which the decision between ore and waste is done. This aspect is called support effect. Any mining
engineer knows that recovered grades are lower when selectivity is poor, in other words, the bigger mining units,
the lower grades. The average grade of a huge block of thousands of cubic meters can be considered average of
the grades of smaller blocks of a few cubic meters contained in the big block. The distribution of grades of huge
blocks is obviously less scattered than that of the smaller ones or compare to the samples. The only grades which
are known experimentally are those of the samples. In order to predict the distribution of grade for blocks of
different dimensions geostatistics provides models of change of support that are based on the experimental
histograms of sample grades as well as their spatial correlation through the variogram [3].

The SMU’s volume for early development of level 220 was given by dimensions 16x16x6 m.
Recoverable reserves were estimated for this volume and for series of different cut-offs given in Table 2. The
ore tonnage and metal quantity for each SMU afterwards panel) was obtained on the basis of the blocks 4x4x6 m
within the panel, according to the exploitation progress.

Tab. 2 Series of given cut-off values.

Cut-off MgO[%] CaO[%] SiO,[%] Fe,0;5[%]

1 >42.5 <1.2 <03 <35
2 >41 >1.2 >0.3 >35
3 >39.5 >32 >0.7 >3.7
4 > 38 >52 >1.1 >39
5 >36.5 >172 >1.5 >4.1
6 >35 >92 >19 >43
7 <35 >11.2 >2.3 > 4.5

3.2 Gaussian point anamorphosis modelling

Uniform conditioning method considers the average grade of the panels as “known”, and then the distribution of
blocks within each panel is calculated directly by using the anamorphosis function to take into account the
change of support. Because uniform conditioning depends heavily upon the quality of given “reality”, it must be
estimated. That estimation can be performed by any interplation method for instance using ordinary kriging [20].
Due to the complex (skewed, multimodal, ...) experimental distributions of studied variables, the better way is to
simulate the average grade. Geostatistical simulation techniques generate realizations with the normal, Gaussian,
distribution. Thus it is necessary to perform the simulations in the Gaussian space and apply at the end a back-
transformation using the anamorphosis function ¢[7]. The objective of simulating the block grades is achievable
by averaging point grades that make a discretization of the blocks. It is compulsory to perform that averaging on
the point grades with the raw distribution. Doing the other way (average of normal values then back-
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transformation) is not correct for the simple reason that the average of Gaussian values is no more a normal
variable [21]. Hence, the anamorphosis function that is required is the anamorphosis on the sample (point)
support. The transformation of the data is achieved by fitting a Hermite polynomial function to the experimental
distribution linking raw (Z) and Gaussian (Y) values [17]:

)=l (x) Z“’” HalY () (1)

with n polynomial coefficients y,/n! for N-th order of Hermite polynomial H,,.
During modelling of the anamorphosis function we are looking for [6]:
e minimal differences between basic statistics of raw and back-transformed variable,
o the mean of the transformed variable is 0 and its variance is equal to 1 as close as possible,
o the average of differences between raw and back-transformed values is 0 and variance minimal,
o the shapes of the experimental histograms of raw and back-transformed variables is the same,
e correlation between raw and back-transformed variables is maximal positive,
o differences between grade/tonnage curves of raw data and back-transformed ones are minimal.

Fig. 5 shows an example of transformation of the MgO values onto normal (Gaussian) variable and back-
transformation obtained by using of 37 Hermite polynomlals
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Fig. 5 Point anamorphosis modelling and variable transformation for MgO values
(left — histogram of raw data, middle — data transformation, right — back-transformation).

3.3 Art of variography

The reference plane for calculation of directional experimental variograms was the vertical one with azimuth of
7° (NO7E), covering drilling fans, diamond drillholes and samples from the cross-cuts. Perpendicular plane
covered samples from the drives. The experimental variograms were calculated along lines for three directions:
vertical, NO7E and E07S. Lag distance was 60 m, number of lags 13 with lag tolerance of 0.5 (or 50 %).

Experimental variograms were calculated for both, variables transformed into Gaussian space for
simulation purposes, and for raw variables, used later for Gaussian anamorphosis modelling with block support
correction.

Mathematical models of basic variogram structures were fitted on calculated experimental variograms
[12]. Because of evident undersampling of Fe20; values and their relation to MgO and CaO values, these three
variables were modelled together, resulted in the final model of coregionalization [5] (Fig. 6). Variable SiO, was
modelled separately. The quality of the fits achieved was checked by cross-validation procedure [1]. Search plan
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for cross-validation, and later for simulations and estimations, was optimized by the moving neighbourhood
parameters:

e 3D axis of search ellipse and search directions,

e number of angular sectors for restriction on the number of samples from one drillhole,
e minimum and optimum number of values per sector,

e maximum number of consecutive empty sectors to avoid extrapolation,

e minimum distance between two samples,

e maximum distance without any sample.

vertical direction
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Fig. 6 Experimental variograms and final model of coregionalization for MgO, CaO and Fe,O;.

Final model represents the following features described by five basic variogram structures that have been

fitted:
1. nugget effect represents presence of a structure smaller than minimal sampling distance,
2. spherical model with range 40 m and anisotropy coefficients (0.9, 1, 0.8) along NO7E, vertical and
EO07S directions representing geometrical anisotropy for short distances [1,2, 11, 12, 13, 20],
3. spherical model with range of influence 250 m along E07S direction not defined along others
directions, representing the bearing of trends of magnesite lentils in carbonates [2, 11, 13, 20],
4. spherical structure with range of influence 130 m along NO7E representing zonal anisotropy
between this direction and perpendicular one,
5. 1" generalized covariance structure along vertical direction representing trend in dip of magnesite
lentils.
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Fig. 7 The schematic sketch of the variography results.

3.4 Conditional simulation of transformed variables

Geostatistical simulation is a process of generating of one realization from all possible realizations in given point
or volume [15]. That simulation must reproduce statistical and geostatistical characteristics of variability
(histogram and variogram) of studied variable. That means that geostatistical simulation generates a set of values
forming one of infinite possible realizations with following criterions [14]:

e in experimental value locations are simulated values the same as data,
o simulated values have the same model of variogram as the experimental ones,
o simulated values follow the same distribution as the experimental ones.

A conditional simulation is therefore a realization randomly selected from the subset of realizations that
match the sample point values. Equivalently, it is a realization of a random function with a conditional spatial
distribution [11].

Turning bands [7, 11, 14] were used to obtain 100 realizations of the average values for panels 16x16x6 m
with discretization 7x7x2 points. The simulations were conditioned by sample values by kriging with the same
moving neighbourhood as that used for cross-validation. Fig 8 shows the final mean simulation of average
values of MgO contents for panels 16x16x6 m, back-transformed from Gaussian space using the anamorphosis
modelled previously.
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Fig. 8 Simulation of MgO the average grade for panels 16x16x6 m.
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3.5 Gaussian anamorphosis modelling for blocks and panels
To achieve the uniform conditioning we have to provide:
o “the reality” of the average panel grades,

e two anamorphosis functions, one for block and one for panel support, i.e. 16x16x6 m and 4x4x6 m
respectively.

The first step was made in previous part by geostatistical simulation. Because we’ve already simulated
the reality, we can directly calculate using anamorphosis function the tonnage T and metal Q of blocks located
randomly inside the panel, conditionally to the Gaussian value of the panel. The idea is that the blocks of a small
volume comprise the proportion of panel’s volume according to a given cut-off [16].

Application of the anamorphosis for different support (X for samples, v for blocks and V for panels) we
get the following relationships:

Zx)=o(r) = zW)=¢,(+,) = z()=¢x\) )

For the discrete Gaussian model, the point values have an anamorphosis function given in (1). For the
block values v have a different one ¢y:

20)=o 0= 3, ) ®

where r is the correlation between Y(v) and Y(x') with value at X” chosen at random in v. It is determined from
the variance of Z(V):

N 2
varZ(v)= “;—:‘ r2" = varZ(x)-v(v,v'), )

n=1

where varz(x)= ZN vl /n!: o2and 7(V,V') is an average variogram between each pair within volume v calculated
n=1
using a discretization of the block.

Similarly we have this model for panel V:
N
- _N"¥Yn pn
Z(V)—¢[Y(V)]—HZ:(; SFRIH,[Y (V)] )

where the correlation R between Y(V) and Y(x’) is obtained from:

N
varZ(V)zz hd
n=I

n!

2
n

R2". (6)

Multiplying the point coefficient y;, by R" is the same as multiplying the block coefficient w,r"
by (R/r)" =1, . The coefficientr;, , which is less than 1, is correlation between v(v) and v(y) for random V" inside V

w2
[16].
Fig. 9 shows the anamorphosis function modelling for panels 16x16x6 m and blocks 4x4x6 m for MgO,

based on the raw variogram models showing the same features as the transformed ones. We can clearly see
decreasing of variability going from samples (blue) to blocks (green) and panels (red).
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Fig. 9 Modelling of Gaussian anamorphosis for blocks (up) and panels (down) — MgO.

3.6 Uniform conditioning

Linear estimation methods such as ordinary or simple kriging commonly fail to provide unbiased estimates of
recovered ore and metal tonnage after cut-off which means that a mining project can be exposed to undue risk.
This risk is significant when the selective mining units are small with respect to the data spacing which results in
too smoothed estimates. Non-linear estimation techniques, as uniform conditioning or disjunctive kriging, are
then necessary for estimation of local grade/tonnage curves [17]. Non-linear estimation techniques open up the
possibilities for the calculations of unbiased estimations of ore tonnage and metal quantity for different cut-offs
and supports. Uniform conditioning method was chosen from the family of available non-linear techniques. The
details on selection of method for the presented project are given in [19].

From previous part we know how to get block or panel values using anamorphosis models. Considering a
block v’ randomly located in panel V we have:

N
z(v)= %r"Hn[Y () ()
n=0 :

So we change from block to panel and we can obtain:

020 |- 3R e, V= 3 Y @Y=z ®

In other words, if we know the panel grade Z(V) we also know the mean of the block grade inside the
panel V because it is exactly the same value. That means if we know the panel grade we can deduce the estimate
of any function of Z(v"), and hence of Y(V'), from it. If we assume that the bivariate distribution of Y(V)[Y(V") is
normal, then we know that given that Y(V) = y(V), the variable Y(v") has a normal distribution with mean r,,, y(V)

and variance 1 — r, [16]. The ore tonnage at a given cut-off z, = ¢, (y,) is:
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T(z, )= E[IZ(V)ZZJZ(V)]: E[l By Y(v) ] 1-G Jﬂv) 9)
The corresponding quantity of metal is:
Q(ZC): E[Z(V Z(v’)zzc|z(v J E[¢ (V)=y, Y(V )J
N N i+°° (10)
=> i HY VD wr IH,(y)H.(y)g(y)dy
i=0 j=0 Ve

Finally, the average recoverable grade M(z) equals the metal quantity divided by the ore tonnage:

)T

(11)

CONCLUSION

This paper presents using of non-linear geostatistical approach for recoverable reserves estimation by uniform
conditioning in ISATIS™ software. Regardless of long time existence of non-linear geostatistical methods, this
was the first time using in Slovakia as a practical study. The reason for that study was the demand for a complex
numerical model of recoverable reserves from the mining company. Necessity of that model comes from
changing the exploitation method from the chamber-pillar to the slicing bench with emphasis on selectivity and
recoverability for more effective exploitation of the deposit. For this reason, the final grade/tonnage curves can’t
be published here. The results presented in this case study, and summarized in Fig. 10, were implemented into
GIS environment [10] created especially for the mining company, allowing real-time three dimensional querying
and rotation of orebody. It resulted in quicker and easier comparison of the resource model to the real
exploitation, leading to more frequent resource updates and following scheduling and prediction.

Numerical model of recoverable reserves, Jelsava, level 220 |
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Fig. 10 Results of non-linear estimation of recoverable reserves for Jelsava — level 220.
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...AND FINALLY: FROM SAMPLES

(7]

(8]

Dibrava Mikova

TO RESERVES...

Dabrava
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RESUME

Predkladany clanok sa zaobera teoretickym pozadim a aplikaciou nelinearneho pristupu rovnomerného
podmieniovania k odhadom vyt'aziteI'nych zasob rudy na novo otvorenom obzore 220 magnezitového loziska
Jelsava. Odhad vytaziteInych zdsob, bud’ globdlnych alebo lokalnych, sa stdva Standardnou geostatistickou
aplikaciou v banskom priemysle, ale aj inych odvetviach I'udskej ¢innosti. Z toho vyplyva, ze geostatistika ako
taka nemoze byt’ ignorovana v procese odhadu a ocefiovania zasob na loZisku. Geostatistické pristupy a metody
su dnes bezne pouzivané mnohymi tazobnymi spolocnostami, a to od etapy prieskumu az po produkciu. Avsak
¢as kedy boli dostupné len variogramy a linearne krigovanie je davno pre¢. Prax si vyzaduje viac vo vztahu k
odhadom zasob na zaklade roznych bilan¢nych podmienok (cut-off).

V geostatistickom zmysle, znamenaju vytazitelné zasoby tondz rudy Ty amnozstvo kovu Qy
obsiahnutého v tejto tonazi pre dant tazobnll jednotku V. Priemer vytazitelného obsahu chemizmu M je potom
vysledkom podielu mnozstva kovu a tonaze rudy. V praxi nie je zaujimavé pracovat’ s absolutnou tonazou, ale
len tondzou tych tazobnych jednotiek, ktorych obsah chemizmu Zy je vyssi ako urcitd bilanc¢na, cut-off,
podmienka tazby z.. Mnozstvo kovu je potom pocitany ako tato tondz vynasobend obsahom chemizmu t'azobnej
jednotky. Tento typ formalizmu je pouzivany k vyjadreniu dvoch premennych vo vyraze indikatorov:

T 1 ak Z, >z, Q =71 1 ak Z, >z,
= = . a = = .
VURER T ak 7y <2, VoV IR T ek Z <2,

Pre vypocet absolitnej tonaZze a mnozstva kovu st Ty a Qy vyndsobené objemom t'azobnej jednotky
a objemovou hustotou tazenej rudy. AvSak vyjadrenia vysSie predpokladaju, Ze v Case tazby je skuto¢na
hodnota obsahu chemizmu taZobnej jednotky znadma. To vSak nie je pravda. Pocas produkcie su zname iba
odhady tohto obsahu chemizmuZz, a tie si odhadnuté na zéklade dostupnych vzoriek, ¢o vedie k chybam v

klasifikacii medzi rudou a jalovinou. Takze zasoby v tomto vyjadreni su v skutocnosti “idedlnymi” zdsobami
a pre odhad skuto¢nych zasob je potrebné pocitat’ s informacnym efektom, ktory je mozné odvodit’ na zaklade
modelov distribtcii skutoénych tazobnych jednotiek a ich odhadov, ako aj ich spolo¢nej a kondi¢nej distribucie.
Kazdy bansky inzinier vie, ze ¢im je vécSia tazobna jednotka, tym je v priemere niz§i obsah chemizmu.
Priemerny obsah chemizmu taZzobnej komory s niekol’kymi tisic kubickych metrov méze byt vnimany ako
priemer obsahov chemizmu malych mikroblokov s obsahom niekol’ko kubickych metrov obsiahnutych v danej
komore. Distriblicia obsahu chemizmu komory je zvyéajne menej rozptylena ako malych mikroblokov alebo
dostupnych vzoriek. Jediny obsah chemizmu, ktory je znamy je obsah chemizmu vo vzorkach. Aby bolo mozné
predpovedat’ a odhadnut’ distribiciu chemizmu pre taZzobné jednotky réznych rozmerov, poskytuje geostatistika
modely zmeny nositela velkosti informacie (support), zalozené na experimentalnom histograme obsahu
chemizmu vzoriek, ako aj ich priestorovej korelacii v podobe variogramu.
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Napriek dlhodobej existencii nelinearnych geostatistickych technik, a ich pouzitiu v ré6znych odvetviach,
poénuc tazbou nerastnych surovin, pripadova Stidia popisana v tomto ¢lanku je ,,prvou lastovi¢kou na tizemi
Slovenska. Dovodom pre vyber tohto pristupu odhadu vytazitelnych zasob magnezitovej suroviny, v zmysle
odhadu tonaze, mnozstva kovu a priemernych obsahov sledovanych zloziek rudy pre rozne bilancné podmienky
(cut-off), bola poziadavka pre vytvorenie komplexného numerického modelu novo otvaranej Casti loziska pre
bansku prevadzku. Potreba takéhoto modelu vyplynula zo zmeny dobyvacej metddy na tomto lozisku, z metody
dobyvania komora-pilier na vystupkové dobyvanie, sdorazom na selektivnu tazbu magnezitovej rudy
a vytazitelnost uzitkovych zloziek, pre potreby efektivnejSicho vyuzivania nerastnej suroviny loziska.
Z uvedeného dovodu nie st v tomto ¢lanku prezentované vysledné krivky kovnatost/tondz. Vytazitelné zasoby
boli pocitané pre podmienky postupu tazby pre t'azobné jednotky o rozmeroch 16x16 m pre vysku vystupku 6m
na zaklade ktorych je vykonavana selekcia medzi rudou a jalovinou. Pouzitd metdda rovnomerného
podmienovania predpoklada Ze priemerné hodnoty Studovanych premennych st pre vybranu selektivnu jednotku
zname. Z uvedeného dovodu boli priemerné hodnoty jednotlivych premennych pre jednotky 16x16x6 m,
transformovanych do normalneho, Gaussovho rozdelenia bodovou Gaussovou anamorfézou (Obr. 5),
simulované metddou otacania pasiem (turning bands), na zaklade variografie (Obr. 6). Pre ziskanie priemernych
hodnét jednotiek 16x16x6 m boli tieto diskretizované 7x7x2 bodmi. Vysledné simulacie boli spétne
transformované do povodného priestoru rovnakou bodovou anamorfozou (Obr. 8). Vysledné vytazitel'né zasoby
podl'a bilanénych podmienok uvedenych v Tab. 2 boli odhadnuté na zaklade vysledkov variografie povodnych,
netransformovanych hodnét a modelov anamorfézy pre velkosti tazobnych jednotiek 16x16x6 m (panelov)
a blokov 4x4x6 m umiestnenych vo vnutri selektivnych jednotiek (Obr. 9)

Vysledky prezentované v tomto ¢lanku, zhrnuté v schéme na Obr. 10, boli zavedené do GIS systému,
vytvoreného Specialne pre potreby banského podniku. Tento GIS umoziuje rychle porovnavanie vytvoreného
modelu s realnou tazbou, ¢o vedie k efektivnejSiemu planovaniu tazby.
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