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Abstract

A simplified finite element model was established to simulate deformation of carbon nanotubes (CNTS)
reinforcing magnesium matrix composites during the tensile test. The stress and strain of matrix and
reinforcement agent and the effect of interface on mechanical behaviour of composites were specially studied.
The simulation results showed that for uniformly distributed CNTs a stress concentration occurs from the fibre
axis towards the interface. The simulations proved that the destruction of the composites starts at the interface;
what well coincides with the experimental results.

Abstrakt

V piispévku je podan zjednoduSeny kone¢né-prvkovy model deformace karbonovych nanotrubic
vyztuzujicich hoi¢ikovou matrici pii tahové zkousce. Specialné jsou studovany napéti a pretvofeni v matrici i ve
zpeviujicich komponentech, jakoz i mechanické chovani rozhrani. Simula¢ni vysledky ukazuji, ze koncentrace
tlaku pisobi od osy vlakna smérem K rozhrani. Destrukce kompozitu za¢ind na rozhrani s matrici, coz je ve
shod¢ s experimentalnimi vysledky.
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1 INTRODUCTION

In short fibre composites, the loading does not affect on a fibre directly, but in the whole structure, because the
matrix can transfer the loading from fibres to close ambient of fibres interfaces. Therefore, the coupling between
the matrix and interface has a significant effect on the stress transfer. In order to better understand the influence
of the interface on mechanical properties of materials, many researches on interface have been done [1-4].
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At present, the metal matrix composites are considered to improve the sub-critical damage, which
influences fibre breakage under the external forces. The critical phenomena depend on the mechanical bonding
inside the matrix and between the fibres. If the interaction between fibres and their ambient was very tight, the
reinforcement of fibres would significantly increase. Therefore, the requirements for the reinforced fibres are as
follows:

1. Fibre with high strength and good toughness.
2. Good bonding between fibre and metal matrix.

The first premise means that mechanical properties of materials can ensure a sufficiently intensive transfer of
external loads, the second one allows an enhancement of coupling between components in the whole structure. If
these conditions are satisfied, the fibres act as an improving material of reinforcement.

The CNTs exhibit no changes for temperatures less than 937 K what indicates that CNTs are more
stable than carbon fibres. The tensile strength of CNTs can reach 50 — 200 GPa, what is over 10 times higher
than the one of graphite and 100 times higher than the one of steel. Moreover, their elastic modulus can reach
1000 GPa and bending rigidity 14.2 GPa [5-7]. Thus, we can assume the carbon nanotube as a kind of short fibre
with a high strength (in accordance with the first condition; the problem is, whether it satisfies the second one).

Generally, the interfacial microstructures of composites are different in various composite systems
depending on the method of preparation. They are not clearly understood until now, nevertheless there are
seldom studies on the short fibre reinforced metal matrix composites.

2 FINITE ELEMENT MODEL

In this paper, a unit cell model is adopted to analyze the mechanical coupling between CNTs and matrix, when
the metal material induces a macroscopic deformation. We suppose that reinforcing CNTs are randomly
distributed in the matrix with a certain volume ratio. The CNTs are assumed as an elastic material, however, the
matrix as an elasto-plastic one.

As the deformation of CNTs under the external force is far less than the one of the matrix, CNTs are
considered as basic components during the finite element calculation. If the ratio of the radius of nanotube to the
radius of matrix is 1:4, then the deformation around CNTSs has a small effect on the far-field stress. Considering
the sample under uniaxial stress, we use a simplified model of cylindrical volume element containing a section
of CNTs (see Fig. 1), for which the 3D problem can be transformed into two-dimensional axis-symmetric one.

Fig. 1 Axis-symmetrical volume element scheme

In order to keep the grid symmetry in the case of oblique uniform far-field tensile stress, the loading of
the representative volume element is transformed to the form as shown in Fig. 2 by relations [8-12]

G', =G, cos’ a, G, =c.sina, T ; =G, cosasina.

Due to the described symmetry of the problem, it suffices to consider only one eighth of the element. The axial
and radial displacements u, u, as well as axial and radial shears T,,T, satisfy the following boundary
conditions:

u,=0, z=0, ; T,=0, z=H_/2,

u=0 r=0z=0,; T,=0 r=R,.
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Here, H.,, Ry, denote the axial length and radius of the modelled element, respectively. The prescribed
tension applied at the top surface of the model along the direction z excites an uniaxial deformation.
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Fig. 2 The diagram of load transformation (L = H,,, D = 2R;)

3 ANALYSIS AND DISCUSSION

3.1 Stressin CNTs

The computer simulation based on the finite element method was oriented to the deformation during the tensile
test, thereby the ANSYS software was applied for a detailed analysis. In Fig. 3, the finite element discretization
and diagram of deformation are shown, the dashed line represents the position after deformation.
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Fig. 3 Mesh diagram of elements and tensile deformation
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When the elasto-plastic deformation of matrix occurs, the internal stress gradients are not remarkable,
because they change in the same order as in axial direction. It suggests that CNTs are uniformly forced and no
obvious stress concentration appears. The typical stress concentration can be observed only at the peripheral
position of CNTs at the contact with the matrix. In other words, the magnitude of stress decreases from the

centre in the axial direction, and, also decreases from the edge to the axis (Fig. 4a,b).
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Fig. 4 Contours of effective stress in CNT

The effective stress dependence in Fig. 5 is computed for the front and back faces.
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3.2 Stress in matrix

Fig. 5 Diagram of effective stress of CNT

At the contact positions between CNTs and matrix, the stress concentration is largest in the fibre centre and
decreases towards the periphery. For the rest part of the matrix, the stress is extremely low (Fig. 6). In particular
radial, at the contact positions between matrix and the CNT (2 mm from the centre), the stress sharply decreases

in one half (Fig. 7).
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Fig. 6 Contour of effective stress of magnesium matrix
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Fig. 7 Diagram of effective stress in magnesium matrix

4 CONCLUSIONS

The computer simulations of the CNT/Mg composite deformation within the tensile test were performed by the
finite element method. For an axis-symmetrical model, the stress of matrix and reinforcement were specifically
discussed. The simulation results showed that for equally forced CNTSs the stress concentration occurred in the
axial direction. It was estimated that the stress magnitudes are the largest in the centre with a successive decrease
towards the periphery. The results proved that the composite destruction will start at the interfaces, and, the
failure mechanism leads to the boundary separation.
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RESUME

V ptispévku jsou prezentovany vysledky pocitacové simulace deformace kompozitu tvofené¢ho karbono-
vymi trubicemi v hot¢ikové matrici. Pro osové symetricky model jsou diskutovany tlak a napéti ve zpeviujicich
elementech kompozitu. Je ukazano, Ze jsou-li vSechny karbonové elementy namahany stejnomérné, koncentrace
tlaku pfevazuje v axialnim sméru. Pfitom je nejvétsi v 0se karbonové trubice a postupné klesa smérem k okraji.
Z vysledku vyplyva, ze ptipadna destrukce kompozitu za¢ind na koncich vlaken a mechanismus poruseni
spociva v separaci rozhrani.
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