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Abstract 

A simplified finite element model was established to simulate deformation of carbon nanotubes (CNTs) 

reinforcing magnesium matrix composites during the tensile test. The stress and strain of matrix and 

reinforcement agent and the effect of interface on mechanical behaviour of composites were specially studied. 

The simulation results showed that for uniformly distributed CNTs a stress concentration occurs from the fibre 

axis towards the interface. The simulations proved that the destruction of the composites starts at the interface; 

what well coincides with the experimental results. 

Abstrakt 

V příspěvku je podán zjednodušený konečně-prvkový model deformace karbonových nanotrubic 

vyztužujících hořčíkovou matrici při tahové zkoušce. Speciálně jsou studovány napětí a přetvoření v matrici i ve 

zpevňujících komponentech, jakož i mechanické chování rozhraní. Simulační výsledky ukazují, že koncentrace 

tlaku působí od osy vlákna směrem k rozhraní. Destrukce kompozitu začíná na rozhraní s matricí, což je ve 

shodě s experimentálními výsledky. 
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 1 INTRODUCTION 

In short fibre composites, the loading does not affect on a fibre directly, but in the whole structure, because the 

matrix can transfer the loading from fibres to close ambient of fibres interfaces. Therefore, the coupling between 

the matrix and interface has a significant effect on the stress transfer. In order to better understand the influence 

of the interface on mechanical properties of materials, many researches on interface have been done [1-4].  
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At present, the metal matrix composites are considered to improve the sub-critical damage, which 

influences fibre breakage under the external forces. The critical phenomena depend on the mechanical bonding 

inside the matrix and between the fibres. If the interaction between fibres and their ambient was very tight, the 

reinforcement of fibres would significantly increase. Therefore, the requirements for the reinforced fibres are as 

follows: 

1. Fibre with high strength and good toughness. 

2. Good bonding between fibre and metal matrix. 

The first premise means that mechanical properties of materials can ensure a sufficiently intensive transfer of 

external loads, the second one allows an enhancement of coupling between components in the whole structure. If 

these conditions are satisfied, the fibres act as an improving material of reinforcement. 

The CNTs exhibit no changes for temperatures less than 937 K what indicates that CNTs are more 

stable than carbon fibres. The tensile strength of CNTs can reach 50 – 200 GPa, what is over 10 times higher 

than the one of graphite and 100 times higher than the one of steel. Moreover, their elastic modulus can reach  

1000 GPa and bending rigidity 14.2 GPa [5-7]. Thus, we can assume the carbon nanotube as a kind of short fibre 

with a high strength (in accordance with the first condition; the problem is, whether it satisfies the second one). 

Generally, the interfacial microstructures of composites are different in various composite systems 

depending on the method of preparation. They are not clearly understood until now, nevertheless there are 

seldom studies on the short fibre reinforced metal matrix composites. 

 2 FINITE ELEMENT MODEL 

In this paper, a unit cell model is adopted to analyze the mechanical coupling between CNTs and matrix, when 

the metal material induces a macroscopic deformation. We suppose that reinforcing CNTs are randomly 

distributed in the matrix with a certain volume ratio. The CNTs are assumed as an elastic material, however, the 

matrix as an elasto-plastic one. 

As the deformation of CNTs under the external force is far less than the one of the matrix, CNTs are 

considered as basic components during the finite element calculation. If the ratio of the radius of nanotube to the 

radius of matrix is 1:4, then the deformation around CNTs has a small effect on the far-field stress. Considering 

the sample under uniaxial stress, we use a simplified model of cylindrical volume element containing a section 

of CNTs (see Fig. 1), for which the 3D problem can be transformed into two-dimensional axis-symmetric one. 

 

In order to keep the grid symmetry in the case of oblique uniform far-field tensile stress, the loading of 

the representative volume element is transformed to the form as shown in Fig. 2 by relations [8-12] 

2 2

L T LT' cos , ' sin , ' cos sinC C C . 

Due to the described symmetry of the problem, it suffices to consider only one eighth of the element. The axial 

and radial displacements uz, ur as well as axial and radial shears ,r zT T  satisfy the following boundary 

conditions: 

0, 0, ; 0, / 2,

0, 0, 0 ; 0, .

z z m

r r m

u z T z H

u r z T r R
 

x 

z 

Fig. 1  Axis-symmetrical volume element scheme 
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Here, Hm, Rm denote the axial length and radius of the modelled element, respectively. The prescribed 

tension applied at the top surface of the model along the direction z excites an uniaxial deformation. 

  

Fig. 2 The diagram of load transformation (L = Hm , D = 2Rm) 

 

 3 ANALYSIS AND DISCUSSION 

 3.1 Stress in CNTs 

The computer simulation based on the finite element method was oriented to the deformation during the tensile 

test, thereby the ANSYS software was applied for a detailed analysis. In Fig. 3, the finite element discretization 

and diagram of deformation are shown, the dashed line represents the position after deformation. 

 

 

Fig. 3 Mesh diagram of elements and tensile deformation 
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When the elasto-plastic deformation of matrix occurs, the internal stress gradients are not remarkable, 

because they change in the same order as in axial direction. It suggests that CNTs are uniformly forced and no 

obvious stress concentration appears. The typical stress concentration can be observed only at the peripheral 

position of CNTs at the contact with the matrix. In other words, the magnitude of stress decreases from the 

centre in the axial direction, and, also decreases from the edge to the axis (Fig. 4a,b).  

 

 

 

 

Fig. 4 Contours of effective stress in CNT 

 

The effective stress dependence in Fig. 5 is computed for the front and back faces. 
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Fig. 5 Diagram of effective stress of CNT 

 3.2 Stress in matrix 

At the contact positions between CNTs and matrix, the stress concentration is largest in the fibre centre and 

decreases towards the periphery. For the rest part of the matrix, the stress is extremely low (Fig. 6). In particular 

radial, at the contact positions between matrix and the CNT (2 mm from the centre), the stress sharply decreases 

in one half (Fig. 7). 

 

 

Fig. 6 Contour of effective stress of magnesium matrix 
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Fig. 7 Diagram of effective stress in magnesium matrix 

 

 4 CONCLUSIONS 

The computer simulations of the CNT/Mg composite deformation within the tensile test were performed by the 

finite element method. For an axis-symmetrical model, the stress of matrix and reinforcement were specifically 

discussed. The simulation results showed that for equally forced CNTs the stress concentration occurred in the 

axial direction. It was estimated that the stress magnitudes are the largest in the centre with a successive decrease 

towards the periphery. The results proved that the composite destruction will start at the interfaces, and, the 

failure mechanism leads to the boundary separation. 
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RESUMÉ 

V příspěvku jsou prezentovány výsledky počítačové simulace deformace kompozitu tvořeného karbono-

vými trubicemi v hořčíkové matrici. Pro osově symetrický model jsou diskutovány tlak a napětí ve zpevňujících 

elementech kompozitu. Je ukázáno, že jsou-li všechny karbonové elementy namáhány stejnoměrně, koncentrace 

tlaku převažuje v axiálním směru. Přitom je největší v ose karbonové trubice a postupně klesá směrem k okraji. 

Z výsledků vyplývá, že případná destrukce kompozitu začíná na koncích vláken a mechanismus porušení 

spočívá v separaci rozhraní. 
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