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               Abstract 

In the present study, the sorption capacity of plant biomass has been studied; more precisely 

the ability of biomass of roots, stems and leaves of an invasive plant Reynoutria japonica to bind up  

Zn
2+ 

ions from aqueous solutions. The results of this biosorption study revealed that the rate and 

extent of uptake were affected by pH level, contact time and initial metal concentration. The 

equilibrium sorption data for the metal system at pH 6.0 was described by the Langmuir isotherms 

model. The sorption equilibrium, when expressed by the Langmuir and Freundlich equations, 

indicated that the process was in compliance with the Langmuir isotherm, which showed the best 

match. The maximum uptake of metal ions was obtained at pH 6.0. The highest sorption capacity for 

Zn
2+

, qmax = 17 mg/g, was achieved using the biomass from leaves. Removal of Zn
2+

 with 1g/l 

biosorbent from leaves was almost 77%, when zinc present in low concentrations, whereas it was 

lower at higher concentrations. With higher biomass doses the removal efficiency of Zn
2+

 was high 

even at high initial concentrations of the metal.  

             

              Abstrakt 

 V této studii byly studována sorpční kapacita rostlinné biomasy, konkrétně schopnost 

biomasy kořenů, stonků a listů invazivní rostliny křídlatky (Reynoutria japonica) vázat z vodného 

roztoku ionty Zn
2+

. Výsledky této biosorpční studie ukazují, že rychlost a rozsah tohoto vázání byly 

ovlivněny hodnotou pH, dobou trvání adsorpce a počáteční koncentrací kovu. Sorpční rovnováha, 

vyjádřená pomocí Langmuirovy a Freundlichovy rovnice, naznačuje, že proces probíhal v souladu s 

Langmuirovou izotermou. Maximální vázání iontů kovu bylo zjištěno při pH 6.0. Pro Zn
2+

 bylo 

nejvyšší sorpční kapacity qmax = 17 mg/g dosaženo při užití biomasy listů. Odstraňování Zn
2+

 pomocí 

biomasy listů v dávce 1 g/l dosáhlo při nízkých koncentracích zinku téměř 77% účinnosti, při vyšších 

koncentracích byla účinnost nižší. Ve vyšších koncentracích biomasy byla účinnost odstraňování 

Zn
2+

 vysoká i při vyšších počátečních koncentracích iontů kovu. 
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    1    INTRODUCTION 

 Heavy metal pollution of water has today become one of the most serious problems. Pollution 

of the environment by toxic metals arises as a result of many human activities like mining, 

metallurgy, electroplating, leather tanning, metal finishing, textile industry, and paper industry [1]. 

Heavy metals are discharged or transported into the atmosphere and aquatic and terrestrial 

environments mainly as solutes or particulates and may reach high concentrations, especially near the 

site of entry [2]. Heavy metals have several characteristics that increase their harmful nature: high 

toxicity, ability to accumulate in living organisms, and long time of staying in ecosystems [3]. Effects 

of these metals on ecosystems are of a large economic and public-health significance. By far the 

greatest demand for metal sequestration comes from the need of immobilizing the metals “mobilized” 

by and partially lost as a result of human technological activities [4].  

As the Ostrava region is known for high density of mines and metallurgical plants, the issue of 

heavy metals pollution is of the highest interest.  

Conventional methods for removing metals include chemical precipitation, chemical 

oxidation or reduction, ion exchange, filtration, membrane technologies and evaporation recovery, 

electrochemical treatments, adsorption on activated carbon etc. [5]. However, chemical precipitation 

and electrochemical treatments are ineffective, especially when concentration of metal ions in 

aqueous solution is within 1-100 mg/l, and also produce large quantity of sludge difficult to treat [6]. 

Ion exchange, membrane technologies and activated carbon adsorption processes are extremely 

expensive, when treating large amount of water and wastewater containing heavy metals in low 

concentrations, hence they cannot be used at large scale [7]. Another major disadvantage of 

conventional treatment technologies is the production of toxic chemical sludge, and its 

disposal/treatment becomes a costly affair and definitely not eco-friendly. Therefore, the removal of 

toxic heavy metals to environmentally safe level in a cost effective and environment friendly manner 

assumes a great importance [8]. 

   For these reasons, alternative technologies that are practical, efficient and cost effective at 

low metal concentrations are being investigated. Under certain conditions, biotechnology may be an 

effective alternative for the removal and recovery of metals. In recent years, applying biotechnology 

in controlling and removing metal pollution has been paid much attention and gradually becomes a 

hot topic in the field of metal pollution control due to its potential application [9]. Biosorption and 

bioaccumulation belong to the group of biotechnological methods suitable for the heavy metal 

removal from wastewater. Biosorption has been emerging as the most prominent alternative 

technology for this purpose. The removal process is rapid, it lasts only few minutes and takes place 

under normal pressure and normal temperature conditions [10].  

 Biosorption has been defined as the ability of certain biomolecules (or types of biomass) to 

bind and concentrate selected ions or other molecules from aqueous solutions. As opposed to a much 

more complex phenomenon of bioaccumulation, which is based on active metabolic transport, 

biosorption by dead biomass (or by some molecules and/or their active groups) is passive and based 

mainly on the “affinity” between the (bio-)sorbent and sorbate [11]. Comparison of the features of 

biosorption and bioaccumulation is shown in Tab. 1.  

Biosorption method, as it has been perceived thus far, could be considered for its economic 

edge as a possible alternative technique for metal recovery. The advantages of biosorption are the low 

operational costs, minimization of volume of chemical and/or biological sludge to be disposed, high 
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efficiency in detoxifying very dilute effluents, no nutrient requirements, regeneration of biosorbent 

and possibility of metal recovery [12].  

The economic advantage of biosorption is in using biomass of raw materials, which are 

either abundant or wastes from other industrial operations. The unique capabilities of certain types of 

biomass to concentrate and immobilize particularly heavy metals can be more or less selective [13].  

 

 

Tab. 1 Comparison of the features of biosorption and bioaccumulation 

Features Biosorption Bioaccumulation 

Costs 

 

Usually low. Most biosorbents used were 

industrial, agricultural and other type of 
waste biomass. Costs involves mainly 

transportation and other simple processing 

charges. 

Usually high. The process involves 

living cells and; hence, cell maintenance 
is cost prone. 

pH 

 

The solution pH strongly influences the 
uptake capacity of biomass. However, the 

process can be operated under a wide range 
of pH conditions. 

 

In addition to uptake, the living cells 
themselves are strongly affected under 

extreme pH conditions. 

Temperature Since the biomass is inactive, temperature 
does not influence the process. In fact, 

several investigators reported uptake 
enhancement with temperature rise. 

Temperature severely affects the process. 

Maintenance/storage Easy to store and use. External metabolic energy is needed for 

maintenance of the culture. 

Selectivity 

 

Poor. However, selectivity can be improved 
by modification/processing of biomass. 

Better than biosorption 

Versatility Reasonably good. The binding sites can 
accommodate a variety of ions 

Not very flexible. Prone to be affected by 
high metal/salt conditions. 

Degree of uptake 

 

Very high. Some biomasses are reported to 
accommodate an amount of toxicants nearly 

as high as their own dry weight. 

Because living cells are sensitive to high 
toxicant concentrations, uptake is usually 

low. 

Rate of uptake Usually rapid. Most biosorption mechanisms 
are rapid. 

Usually slower than biosorption, since 
intracellular accumulation is time 

consuming. 

Toxicant affinity High under favourable conditions. Depends on the toxicity of the pollutant. 

Regeneration and reuse 

 

High possibility of biosorbent regeneration, 

with possible reuse over a number of cycles. 

Since most toxicants are intracellularly 

accumulated, chances are very limited. 

Toxicant recovery 

 

With proper selection of elutant, toxicant 

recovery is possible. In many instances, 
acidic or alkaline solutions proved to be an 

efficient medium to recover toxicants. 

Even if possible, the biomass cannot be 

utilized for next cycle. 

 

Biosorbents for the removal of metals/dyes belong mainly to the following categories: 

bacteria, fungi, algae, industrial wastes, agricultural wastes, and other polysaccharide materials. In 

general, all types of biomaterials have shown good biosorption capacities towards all types of metal 
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ions [14]. Abundant natural materials, particularly of cellulosic nature, have been suggested as 

potential biosorbents for heavy metals. Considering the number of candidate biomass types and the 

number of metals of interest, all multiplied by the number of experimental or process parameters, the 

task of prospecting for new and potentially feasible metal biosorbents has a very wide scope [15].  

 The mechanism of biosorption of heavy metals by biomass is still not clear. Most 

researchers (process engineers, chemical engineers, biologists and environmental engineers) have 

concentrated on the optimal conditions for developing large scale applications for heavy metal uptake 

from industrial waste water using living or nonliving biomass. 

  In this study, we have chosen a novel biosorbent - roots, stems and leaves of a plant species 

Reynoutria japonica. This plant species is an invasive ubiquitous plant investigated currently as a 

possible energetic plant. It is also known that the species of this genus are able to accumulate heavy 

metals from soil [16], [17].   

   2    MATERIAL AND METHODS  

   2.1 Preparation of biosorbents 

All the samples of Reynoutria japonica used were collected from the same non-urban area in 

foothills of Lysá hora Mountain, in the area of Moravskoslezské Beskydy. This sampling area does 

not have any prior history of contamination by heavy metals. Roots, stems and leaves of this plant 

were air-dried at room temperature. The dried samples were ground and screened using a sieve 

shaker; uniform particle size fraction of 1-2 mm was obtained (Fig. 1). Ion exchange resins 

manufactured for the same purpose generally feature particle sizes between 0.7 and 1.5 mm, and 

biosorbents granule size usually ranges between 0.5 to 2 mm [7].  The particles of roots, stems and 

leaves were twice washed with 0.01 M HCl (10 g/1 litre), then with an extensive volume of de-

ionized water, in order to remove soil or debris, and finally washed with distilled water. The biomass 

samples were then oven-dried at 90 
◦
C for one day.  

a c 
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b

 

d

 

Fig. 1 Biomass particles: a  roots, b stems, c leaves; d Reynoutria japonica 

 

2.2   Chemicals 

Zinc ions Zn
2+

 (ZnSO4.7 H2O) were used in this study. The test solutions containing single 

ions were prepared by diluting a proper amount of 1g/l stock solution of the above mentioned metal 

ions to obtain desired concentrations. All chemicals used were of an analytical reagent grade and 

were used without further purification. 

 2.3.    Procedures of experiments 

 2.3.1  Time course 

 The time course of  Zn
2+ 

uptake by Reynoutria japonica was investigated. Two samples of 5 g 

of sorbent biomass were each suspended in 500 ml of a heavy metal solution. The flasks were placed 

for 6 hours on a shaker at 120 rpm, at the room temperature of 25 
0
C. pH of solutions tended to drop 

during the equilibration and therefore it was, during the sorption experiments, adjusted with 0.1 M 

solution of NaOH or 0.1 M H2SO4. The temperature and pH were measured by a microcomputer 

meter. Samples were taken from the solution at intended intervals and were filtered through a filter 

paper. Heavy metal concentrations in the resulting supernatant were measured by the Atomic 

Absorption Spectrometry (AAS) Unicam 969. All samples were tripled, with the averages presented 

as the results. 

 2.3.2  Determination of adsorption isotherms 

 In the present experiment we have determined the adsorption isotherms for zinc. Amounts of 

0.1 g of dry acid-pre-treated plant biomass (all three types: roots, stems and leaves) and, in additional 

experiment, 1 g of leaves biomass were suspended in 100 ml samples of various concentrations (10-

100 mg/l) of Zn
2+ 

solutions. pH of solutions before and during equilibration was adjusted with 0.1 M 

solutions of H2SO4 and 0.1 M solutions of NaOH. After 60 minutes of incubation, the zinc samples 

were filtered, in order to remove the biomass, and metal concentration in supernatant was measured 

with AAS. The quality of the sorbent material is judged according to how much sorbate it can attract 

and retain in an „immobilized“ form. For this purpose it is customary to determine the metal uptake 

(q) by the biosorbent as the amount of sorbate bound by a unit of solid phase [4].   
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SCfCiVq /)(                                                                        (1) 

where:   

V    – the volume of metal-bearing solution contacted with the sorbent some  [l], 

Ci     – initial and residual concentrations of metal in the solution [mg/l], 

Cf     – residual concentrations of metal in the solution [mg/l],  

S       – the amount of the added biosorbent [g]. 

 

 

      3      RESULTS AND DISCUSSION 

       3.1  Time-course of sorption  

Time-course profiles of sorption of Zn
2+

 by Reynoutria japonica biomass at the 

concentration of 10 mg/l 
 
are illustrated in Fig. 2. The sorption rate for zinc was distinctly divided 

into two stages: fast initial sorption stage was followed by a much slower sorption stage. At pH 6 the 

metal concentration dropped rapidly during the first 10 minutes. Biosorption equilibrium was 

achieved in 60 minutes; after that a further biosorption was negligible. These results are in 

accordance with other biosorption studies using various groups of microorganisms and plants, where 

fast initial rates of metal binding, followed by slower onset of equilibria have been reported [18]. In 

the sample with the biomass concentration of 1 g/l the fastest adsorption of Zn
2+ 

was on leaves 

biomass, followed by stems and then by roots. After initial steep decrease of zinc concentration, some 

mild increase was observed (Fig. 3). This phenomenon was previously described in bioaccumulation 

of copper by alive cells of Chlorella kessleri, when copper caused the destruction of algae cell walls. 

However, in biosorption experiments with dead biomass observation like this is exceptional [19].    

 

 
Fig. 2 Time course of metal sorption of divalent zinc by roots, stems and leaves of Reynoutria 

japonica  (biomass dosage 10g/l, initial metal concentration 10 mg/l, pH 6.0, room temperature 

25  
0
C). 
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Fig. 3 Time course of metal sorption of divalent zinc by roots, stems and leaves of Reynoutria 

japonica (biomass dosage 1g/l, initial metal concentration 10 mg/l, pH 6.0, room temperature  

 25  
0
C). 

 

 

 

 3.2 Effect of pH 

One of the most important parameters in biosorption processes is the pH value of solution. It 

is commonly agreed that the sorption of metal cations (Cd
2+

, Cu
2+

, Zn
2+

, Pb
2+

, Ni
2+

, Mn
2+

, Al
3+

, Co
2+

, 

Cr
3+

, Fe
3+

)  increases with increasing pH [7]. Solution pH affects cell wall metal binding sites and the 

metal ion chemistry in water [20]. pH could affect the protonation of functional groups in the biomass 

[21]. Since the solubility of many metal complexes in solution decreases with increasing pH, the 

sorption increases with increasing pH [22]. The effect of initial pH on biosorption is shown in Fig. 4.  

The experiment showed an increase of sorption with pH values growing from 4 to 6; at pH 7 decrease 

of sorption occurred in all three types of biomass. The results were, however, to a certain extent, 

different in the case of stems biomass, where sorption of  Zn
2+

 was rather low at pH 5. These results 

are in accordance with the fact, that at low pH protons (H
+
) would compete for active sites on the 

cells and thus restrict the interaction of metal ions and the biomass. Similar results for Zn
2+

 were 

obtained with the biomass (also roots, stems and leaves) of creosote bush Larrea tridentata [23]. 

Schneider et al. [24], and Miretzky et al. [25] suggested that heavy metals adsorb onto the dead 

biomass of many macrophyta through two mechanisms: specific ion exchange between heavy metal 

ions and protons, and simple surface precipitation, although it is not possible to differentiate between 

them based solely on the sorption data. As mentioned above, pH had a tendency to drop during the 

sorption of metal ion onto biomass; NaOH was therefore used for adjustments. Kratochvil et al. [26] 

confirmed that pH is dropping during sorption as a results of ion exchange between a proton and a 

metal ion. This pH decrease in our experiments hence suggests that the binding mechanism of zinc 

onto Reynoutria japonica biomass may be an ion-exchange type process as well. 
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Fig. 4.  Effect of pH on the sorption of Zn

2+
 by Reynoutria japonica (biomass dosage 1g/l, pH 4.0-

7.0, initial Zn
2+ 

concentration 10 mg/l, room temperature 25  
0
C). 

 

 

 

 

 

 

 

3.3    Biomass concentration 

Yet another important factor affecting biosorption is the biomass concentration. As the 

leaves biomass demonstrated high affinity to zinc, it seemed to be the most suitable biosorbent for 

testing the effect of two different concentrations of sorbent to various concentrations of zinc solution. 

Increase in biomass concentrations from 1 g/l to 10 g/l decreased the loading capacity q in all initial 

concentrations of Zn
2+

 in solution (Fig. 5). As opposed to the zinc uptake capacity, the Zn
2+

 removal 

efficiency increased. In our experiment the removal efficiency in the sample with the biomass content 

of 10 g/l and with the initial Zn
2+

 concentration of 10 mg/l reached 99.4% - see Fig. 6. This was 

attributed to the increase in concentration of biosorbent, resulting in the increase of adsorption 

surface area. 
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Fig. 5 Comparison of Zn
2+

 uptake (mg/g) in samples with 1 g/l and 10 g/l of Reynoutria 

japonica leaves biomass. 

 

 

Fig. 6 Comparison of Zn
2+

 removal efficiency (%) in samples with 1 g/l and 10 g/l of 

Reynoutria japonica leaves biomass. 

 

 

3.4  Sorption isotherms 

3.4.1  Adsorption isotherm 
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Equilibrium isotherms are calculated, in order to determine the capacity of the biosorbent for 

metal ions. During the biosorption, a rapid equilibrium is established between adsorbed metal ions on 

the biomass (q) and unadsorbed metal ions in solution (Cf) [4]. 

In order to describe the sorption of Zn
2+

 by Reynoutria japonica at pH 6.0, experiments were 

carried out with zinc concentrations ranging from 10 to 100 mg/l. In the present study the 

experimentally observed uptake capacity was 19.48 mg/g of leaves of Reynoutria japonica in a 

residual concentration of 35 mg/l (1g of leaves biomass per 1l of sample). However, in both low and 

high concentrations, leaves showed the best results (Fig. 7). Due to these excellent results, we have 

tried to create the adsorption isotherm also for the leaves biomass concentration of 10 g/l. In this 

concentration, the isotherm exhibited an increasing trend and the highest sorption 8.4 mg/g was 

achieved with a residual concentration of 12.53 mg/l (Fig. 8).  

 

3.4.2 Langmuir and Freudlich isotherms 

The process of zinc sorption on the biosorbent was described by the Langmuir and Freudlich 

adsorption models, which are widely used to analyze the data for water and wastewater treatment 

applications. The Langmuir equation which is valid for monolayer sorption onto a surface with a 

finite number of identical sites is given by Eq. (2). 

 

                        

 

                                                             ff bCbCqq 1/max                                                               (2) 

                                                                       

 

 

where: 

qmax     – maximal metal uptake  [mg/g ], 

b            – constant related to the affinity of the binding sites [l/mg],  

q            – experimental metal uptake [mg/g ], 

Cf                – residual concentration of metal in solution [mg/l]. 

 qmax and b can be determined from the linear plot of Cf:/q vs Cf  for Langmuir 1 or 1/q vs 1/Cf for 

Langmuir 2 [27].  

 

           The Langmuir sorption model served to estimate the maximum metal uptake values when they 

could not be reached in the experiments. In general, for good biosorbents, high qmax and high b are 

desirable [28]. The Langmuir constants (qmax, b) and correlation coefficient R
2
 for the zinc biosorption 

onto biomass of Reynoutria japonica are presented in Table 2. The results indicate the applicability of 

the Langmuir 1 model for biosorbents of Reynoutria japonica, and the metal examined. 
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Tab.2  Langmuir constants and correlation coefficient for biosorption of zinc on biomass. 

 

 

 

 

 

 

Zn 

 qmax b R2 

                            Langmuir model 1 - adsorption constants 

Biosorbent 1,5 mm 1g/l 

Roots 7.36 0.05 0.9128 

Stems 9.73 0.13 0.9779 

Leaves           17.00 0.26 0.9807 

Biosorbent 1,5 mm 10g/l 

Leaves 9.14 0.85 0.9923 

                            Langmuir model 2 - adsorption constants 

Biosorbent 1,5 mm 1g/l 

Roots 7.78 0.12 0.8984 

Stems 6.82 0.25          0.857 

 Leaves 17.57 0.18 0.9361 

 

 

 

Fig. 7  Sorption isotherms for the sorption of  Zn
2+

 onto roots, stems and leaves of Reynoutria 

japonica (biomass dose 1 g/l, contact time 60 minutes, pH 6.0, room temperature 25  
0
C). 
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Fig. 8  Sorption isotherm for the sorption of  Zn
2+

 onto leaves of Reynoutria japonica 

(biomass dose 10 g/l, contact time 60 minutes, pH 6.0, room temperature 25  
0
C). 

 

 

The empirical Freundlich equation based on sorption on a heterogeneous surface is given 

below by Eq. (3). 

 

 

                                                                q = k Cf 
1/n                                                                                                    

(3)
 

 

where: 

 q    – experimental metal uptake [mg/g ], 

Cf   –  residual concentrations of metal in the solution [mg/l], 

k     – maximum adsorption capacity [mg/g ], 

n     – constant related to the affinity of the binding sites or binding strength [l/mg].   

The equation can be linearized in the following logarithmic form and Freundlich constants can 

be determined: ln q = ln k + 1/n ln Cf  [29]. 

The plot of ln q versus ln Cf for the biosorption of Zn
2+

 onto dried biomass of Reynoutria 

japonica was employed to generate the intercept value of k and the slope of 1/n and is presented in 

Fig. 8. 
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Fig. 9  Freudlich sorption isotherms for the sorption of  Zn
2+

 onto leaves of Reynoutria japonica 

(biomass dosage 1g/l, contact time 60 minute, pH 6.0, room temperature 25  
0
C). 

 

The sorption capacity parameter obtained from a batch experiment comes in useful for 

providing information about the effectiveness of the metal–biosorbent system. 

  It is evident from Tab.1 and Fig. 7-9 that the Langmuir isotherm model is well fitted for Zn
2+

 

sorption which seems to suggest that the zinc sorption by dried biomass of Reynoutria japonica was 

more likely monolayer surface adsorption, instead of heterogeneous sorption. In the case of 

adsorption by leaves biomass this fact was also evidenced by the high R
2
 values (>0.999). Leaves of 

Reynoutria japonica had a higher affinity for zinc at lower equilibrium concentrations, as indicated 

by the desirably steeper sorption isotherm in Fig. 7. The stronger affinity for metal is demonstrated by 

steeper isotherm slopes at low residual metal concentrations.  

For comparison, the maximum adsorption capacity for waste tea leaves was found to be 

11.77 mg/g [30] and for palm tree leaves maximum uptake capacity of 14.70 mg/g was obtained at 

25.0°C [31].  The use of biomass of submersed aquatic plant Ceratophyllum demersum resulted in the 

capacity of 13.98 mg/g [32] and binding capacity of zinc by creosote bush biomass Larrea tridentata 

were 6.24 mg/g for roots, 5.05 mg/g for stems and 6.20 mg/g for leaves [23]. 

 

4  CONCLUSIONS 
 

This work has tested the possibility of utilization of biomass of the Reynoutria japonica for 

biosorption of heavy metals. 

Capacity experiments have demonstrated: 
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 Kinetics of zinc biosorption by inactive biomass was fast, and in the sample with a biomass 

concentration of 10 g/l most of the metal was adsorbed within 10 minutes. The maximum 

decrease of the zinc concentrations (that is removal efficiency) was in the sample of leaves 

biomass (99.4%). Biosorption equilibria were usually achieved in 60 minutes.  

 pH had a strong effect on the zinc biosorption capacity. The capacity of zinc biosorption by 

biomass increased with the increase of pH values; optimal pH was detected to be 6.  

 Maximal sorption capacity was obtained, when using the leaves biomass in 1 g/l 

concentration.  
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