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Abstract 

The basis of mathematical analysis of geodetic measurements is the method of least squares (LSM), 

whose bicentenary we celebrated in 2006. In geodetic practice, we quite often encounter the phenomenon when 

outlier measurements penetrate into the set of measured data as a result of e.g. the impact of physical 

environment. That fact led to modifications of LSM that have been increasingly published mainly in foreign 

literature in recent years. The mentioned alternative estimation methods are e.g. robust estimation methods and 

methods in linear programming. The aim of the present paper is to compare LSM with the robust estimation 

methods on an example of a regression line. 

 
Abstrakt 

Základom matematickej analýzy dát je metóda najmenších štvorcov (MNŠ), ktorej dvesté výročie sme si 

pripomenuli v roku 2006. V geodetickej praxi sa v dôsledku napr. vplyvu fyzikálneho  prostredia  pomerne  

často stretávame s javom, že do súboru meraných dát prenikajú odľahlé merania. Práve táto skutočnosť viedla 

k modifikáciám MNŠ ktoré sa v posledných rokoch čoraz častejšie publikujú predovšetkým v zahraničnej 

literatúre. Spomínanými alternatívnymi odhadovacími metódami, sú napr. robustné odhadovacie metódy 

a metódy lineárneho programovania. Náplňou predloženého príspevku je porovnanie MNŠ s robustnými 

odhadovacími  metódami na príklade regresnej priamky. 
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1 INTRODUCTION 

As declared above the subject of the present contribution is to refer also to other ways of processing the 

results of geodetic measurements as compared to the standard method being used, which is the least squares 

method (LSM). Although this method is completely remade, when using it a "smudge" of undetected blunders 

penetrated into the set of measured values may occur, mostly as a result of the undue impact of physical 

environment on measurements. For this reason, the above mentioned alternative methods of statistical processing 

appeared in geodetic practice. Given the fact that the alternative estimation methods are used primarily for the 

detection of troublesome effects on measurements, the properties of these processing methods are applied to an 

illustrative example of a regression line weighted first by a normal distribution and then to an example of a line 

weighted by an experimental outlier. In this paper the following methods are compared with LSM: the robust M- 

estimator by Huber, the robust M-estimator by Hampel and the Danish method. 

 

 
2 THE METHOD OF LEAST SQUARES 

The need of an adjustment calculus and the discovery of LSM itself resulted from advances in technology 

for measuring and accumulation of surveying material in the field of astronomy and geodesy at the end of the 

17th century. The discoverer of the least squares method, having become a classic tool for the theory of errors, is 

Carl F. GAUSS (1777-1855) [7]. The essence of this method consists in minimizing the sum of squared 

deviations occurred during the measurement of the behaviour of a quantity or physical phenomenon (3). The 

least squares method results from the condition of a so-called L2-norm (2), whereas the norm is the number 

assigned to each n-dimensional vector ),( ,,21 nvvvv   characterizing its size in some sense [1] , [2]. In geodesy, 

the objective functions of the following type are used most frequently: 
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where: 

p - parameter defining the special type of objective function, 

in i - vector of corrections.  

 

Assuming 2p  (L2 norm) the objective function is as follows:   
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leading to the least squares method that, under certain conditions, leads to the most reliable estimators of 

unknown quantities, and hence this is the method most commonly used in geodetic practice for processing 

measured data.  The mathematical formulation of this method is as follows: 
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where: 

v - vector of corrections 

P - matrix of weighting coefficients (weights of p measurements) being ordered along the diagonal of 

the weighting matrix.  

 

The measurement weights are proportional numbers, qualitatively evaluating the achieved 

measurement result. Introducing the weights we prefer a more accurate measurement that takes a share 

in the measurand adjustment. 
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The least squares method will also be explained on a one-dimensional linear model, while all 

the estimation methods will be demonstrated on an example of a regression line. Let the following 

linear relationship exists between the variable y, variables X (Fig. 1) and the random component ui: 

 

 
equation modellinear    y

n1,2i kde      

0

22110
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uXXXy iikkiii
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      (4) 

 

where: 

y i - dependent variables 

X1 , X2, ... X k - independent variables 

 0 - model parameter expressing the value attained by y when X  

 equals zero, called intercept 

 - regression coefficient indicating the slope of the regression line, i.e. the rate at which y i  increases 

per unit increase in X 1, X 2, ... Xk 

ui – random component. 

 

Fig. 1 One-dimensional linear model 

 

We may rewrite the model using the following matrix notation: 

uXβy  ,           (5) 

where: 

y - n-dimensional vector of the dependent variables, 

X - matrix (k +1) independent variables 

u - n-dimensional vector of the random components, 

 - unknown (unobservable) parameters we need to determine; in geodesy  

     we use the term estimators. 

 

Thus, when deriving an estimator we result from the matrix notation (5). The problem lies in finding 

the estimator ̂  so that the estimated regression line uXy  ̂ˆ  approximates best the regression line 

uXy   .  

The following applies to the difference yy ˆ , the so-called vector of residuals (the vector of 

corrections in geodesy) nvvvv ,,, 21  :  
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vβXy
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whereof 

Using LSM, we search for the estimator β̂  of the vector of parameters   so that the sum of the 

squared residuals (3) is minimum. 
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Multiplying (7) we get: 
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Let us differentiate the equation (8) with respect to 
T

β̂ : 
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If we set the derivative (9) equal to zero, then we obtain the relationship 

 

 yXβXX
TT ˆ            (10) 

 

that is the matrix notation of normal equations. The matrix XX
T

 is nonsingular, i.e. it is invertible. 

Therefore, the following applies to the vector of unknown parameters from the relation (10): 

 

 yXXXβ
TT 1)(ˆ             (11) 

 

If the line equation (Fig. 2) has the generally known form 

 

 baXy            (12) 

 

where a and b are the searched estimators to be determined, the line equation has the following form 

in a matrix notation: 

 vAy  X ,          (13) 

where: 

v:  vector of corrections, 

A: configuration matrix, the matrix of partial derivatives, 

X: searched estimators (in geodetic calculations, X is replaced by the parameter   ,   

     these are coordinates as a rule). 
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Fig. 2 Regression line in general 

 

Whereas the relationships between the measured and the unknown variables are expressed by an 

intermediary function of the searched unknown parameters (estimators), the given model may be 

rewritten into the following form: 
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The following applies to the vector of residuals: 

 

 lAv  ˆ ,          (17) 

 

which leads to the Guss-Markov model: 
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When using LSM the following applies to the sought estimators after adjusting the parameters 

(indices): 
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3 ROBUST ESTIMATION METHODS 

In the second half of the last century unconventional estimation methods were developed in the 

theory of linear programming in addition to the standard estimation methods. In those methods, other 

variable, not the arithmetic mean, is selected as the parameter of centrality. From these methods, the 

so-called robust estimation methods are preferred in geodetic practice [10] , [9] , [8] , [6] , [5] , [4]. 

Two types of robust estimations are known: robust estimations applied on the basis of LSM, 

when the sum of squared corrections is replaced by more appropriate correction functions: e.g. 

maximum credible estimators (robust M - estimators) [10] , [9] , [8] , [6] , [5] , [4] and pure robust 

methods  that include linear programming methods, such as a simplex method. 

The M robust method of adjustment on the principle of LSM occurs when there is no minimized 

function vvT  in the estimation process, but another suitably chosen correction function )( iv  called the 

function of losses (estimators). 

min)( iv  ,          (20)

         

that generates the so-called influence function )( iv  for the estimation process, characterizing 

the impact of errors on the adjusted values, which the following applies to: 
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 In order to be robust, the adjustment should be performed by an iterative method with variable 

weights, i.e., so that the weights for observables are determined as functions of corrections in each 

iteration step 
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where )( ivp  is the weighting function in the adjustment process solution. The iterative robust 

estimation algorithm proceeds as follows: 

1. In the first iteration step the standard LSM adjustment with weights 1)1(

1 p  is carried out ((1)-

the iterative step for the i-th observable), in case of heterogeneous measurements it is 

necessary to perform their homogenization by means of the matrix of the square roots of the 

weights P  (this feature is available in a MATLAB program - rootm (P)) [4] .  

2. From the corrections obtained in the first iteration step using the weighting function )( ivp  the 

new weights are determined to be used in the next step and by analogy in further ones. 

New weights are created according to a relevant regulation for the weighting function up to the 

end of the iteration process being selected with a reasonable number of steps so that the acceptable 

(
6) 
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convergence of weights occurs in the last steps. The weighting functions are determined based on 

previously theoretically and empirically investigated and verified different assumptions and for 

different kinds of measurements. 

Using the robust estimation techniques in the processing of horizontal geodetic control networks 

a great deal of attention was paid to v [4]; for that reason the present contribution demonstrates the 

following robust estimation methods with their experimented and verified constants on an example of 

a regression line [3] , [4] , [5] , [6] , [8] , [9] , [10] : the robust M - estimator by Huber, the robust M - 

estimator by Hampel and the Danish method. 

 

2.1 Robust M-estimator by Huber 

This estimator uses the following functions and relevant tuning- damping constants 
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The behaviours of these individual functions may be illustrated graphically as well [4] , [10]. Due to the 

scope of the contribution and the fact that the principle of robust M-estimation methods consists in the repetition 

of LSM with gradual changing the weights according to the relevant regulation (23) at the used processing 

methods, we present only the graph of the weighting function. 
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Fig. 3 Graphic behaviour of the weighting function for the robust M-estimator by Huber 

 

2.2 Robust M-estimator by Hampel 

This estimator uses the following functions and relevant damping constants: 
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influence function 
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weighting function 
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Fig. 4 Graphic behaviour of the weighting function for the robust M-estimator by Hampel 

 

2.3 Danish method 

The strategy of the Danish method is that it reduces (shrinks) the impact of remote 

measurements (outliers) on the estimates of quantities. The principle of this method is based on the 

indication of the outliers by corresponding major corrections. After the standard adjustment of the 

estimations of the first-order parameters by the method of least squares through the Gauss - Markov 

model, the a priori weights of measurements are replaced by correction functions. The next iteration 

step is the adjustment of the initial weights of measurements according to the following relation 

 

,2,1         )(1  ivppp ii           (30) 

 

which results in the increase of the absolute values of outlier measurements, while reducing their 

deformation impact on the network geometry. The iterative cycle is repeated until expected results are 

achieved. In the current horizontal geodetic control networks the solution requires no more than (10-

15) iterations [4] , [3]. For this method the following functions and standards have been derived: 
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At present different types of exponential functions are used for the weighting function [3]. In 

order to demonstrate this method, the following weighting function was used in the practical solution: 
 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Grafický priebeh váhovej funkcie

v - opravy

p
(v

) 
- 

vá
h

y 
m

er
a

n
í



23 

 

 

GeoScience Engineering Volume LVII (2011), No.3 

http://gse.vsb.cz p. 14-29, ISSN 1802-5420 

weighting function 
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with these standards: 

for the 1st iteration step  0a  , 

for the 2nd and 3rd iteration steps 05.0a  and throughout the iterative process 3,3  cb .  

Thus, the equation (32) is defined by the following interval: 

 

cspc  01i /v           (33) 

which the weights of measurements are started to be determined from. The constant c is chosen 

usually between 2 to 3 and depends on the redundancy (excess measurements) determined by the 

Gauss - Markov model and the quality of measurands. If the constant c <2 the method being used is 

robust, in case c> 3 the processing method is changed to LSM.  

 

4 EMPIRICAL DEMONSTRATION 

This part of the paper is devoted to examining the properties of individual estimation methods 

using an example of a regression line that may be represented from the geodetic point of view, e.g. by 

the electronic rangefinder equation.  

 

4.1 Adjustment of the regression line through LSM 

The properties of estimation methods were studied on an illustrative example of a regression 

line baxy   whose modified form ppmdabd ..  is normally used in geodesy to characterize the 

accuracy of electronic rangefinders, where the parameter a  characterizes the effect of independent 

errors and the parameter b  characterizes the effect of errors dependent on measured distance. The 

constant ppm  (parts per million - means "out of million") is equal to 10
-6

. The adjusted regression line 

in the form ][32 mmppmdy   was weighted with a normal distribution by means of the least squares 

method (Fig. 5). 

 

Fig. 5 Deterministic model of the regression line weighted with a normal distribution 

Note: dSTD  , 
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When using this method the basis is the model ΘAvl ˆ  leading to the famous Gauss-Markov model 

[1]. The results of adjustment of the regression line by means of LSM are demonstrated in Table 1, the 

graphical interpretation of the results obtained is shown in Fig. 6. 

 

Fig. 6 Graph of theoretical values of the regression line adjusted by means of LSM 

 

 
Tab. 1 Adjustment results of the regression line weighted with a normal distribution by means of LSM 

 

no. of 

m. 

Theoretical line LSM 

d d
erm


.det

 d
..exp

  v 

[m] [mm] [mm] [mm] [mm] [mm] 

1. 200.00 3.20 3.40 0.20 0.2473 -0.05 

2. 400.00 3.40 3.80 0.40 0.4145 -0.01 

3. 600.00 4.50 4.20   -0.30 -0.3182 0.02 

4. 800.00 5.30 4.60 -0.70 -0.7509 0.05 

5. 1000.00 4.70 5.00 0.30 0.2164 0.08 

6. 1200.00 5.00 5.40 0.40 0.2836 0.12 

7. 1400.00 5.70 5.80 0.10 -0.0491 0.15 

8. 1600.00 6.50 6.20 -0.30 -0.4818 0.18 

9. 1800.00 6.30 6.60 0.30 0.0855 0.21 

10. 2000.00 6.40 7.00 0.60 0.3527 0.25 

 

Regression line parameters: 

Deterministic shape of the line  y = 3,0 [mm] + 2,0*ppm*d 

Parameters of the line estimated by LSM y = 3,1 [mm] + 1,8*ppm*d 

 

Note: 
3.2..  ppmdppmdabSTD d  

v  , dd
erm


..exp.det

  
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Given the fact that the present contribution is devoted to the issues of estimation methods, which allow 

to reveal the so-called outlier measurements in the set of measured data and for which we do not select 

the arithmetic mean as the centrality parameter, the regression line is deliberately weighted with just 

one outlier, in order to track the performance of such methods, Fig. 6. Such modified regression line 

was adjusted first by the method of least squares and then by the iteration-based robust M-estimation 

methods. 

 

   

 

 

 

 

 

 

 

 

 

Fig. 7 Graph of theoretical values of the proposed regression line with an experimental outlier 

 
 

 

The graphic interpretation of the results obtained by the adjustment of the modified regression line 

processed by LSM is shown in the following figure: 

 

Fig. 8 Graphical interpretation of the adjustment results of the regression line with an experimental outlier 

by LSM 

 

 

The numerical results of the line adjustment by the least squares method is presented in Tab. 2.     
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Tab. 2 Adjustment results of the regression line with an experimental outlier by LSM 

 

no. of m. 

Theoretical line LSM 

d d
erm


.det

 d
..exp

  v 

[m] [mm] [mm] [mm] [mm] [mm] 

1. 200.00 3.20 3.40 0.20 -0.0436 0.24 

2. 400.00 3.40 3.80 0.40 0.2594 0.14 

3. 600.00 4.50 4.20   -0.30 -0.3376 0.04 

4. 800.00 5.30 4.60 -0.70 -0.6345 -0.07 

5. 1000.00 4.70 5.00 0.30 0.4685 -0.17 

6. 1200.00 5.00 5.40 0.40 0.6715 -0.27 

7. 1400.00 5.70 5.80 0.10 0.4745 -0.37 

8. 1600.00 6.50 6.20 -0.30 0.1776 -0.48 

9. 1800.00 9.50 6.60 -2.90 -2.3194 -0.58 

10. 2000.00 6.40 7.00 0.60 1.2836 -0.68 

 

Regression line parameters: 

Deterministic shape of the line  y = 3.0 [mm] + 2.0*ppm*d 

         Parameters of the line estimated by LSM y = 2.7 [mm] + 2.5*ppm*d 

 

4.2 Regression line adjustment by means of robust M-estimation methods 

The robust M-estimator methods along with the Denmark method are based on the principle of 

the least squares method. These are iterative methods (in which the adjustment process is repeated 

several times); their principle consists in so-called “reweighting”, which means that the weights are 

being changed intentionally. In the first iteration step, the standard method of least squares is 

performed, where the weight of each measurement is the same and equal to one. In the next step, the 

weights are correction functions. First the regression line weighted with a normal distribution and then 

the regression line weighted with an outlier was adjusted through the above robust M-estimation 

methods and the Danish method.   

The adjustment results of both lines are shown in Tables 4 and 5, together with the graphical 

interpretation of processing results.  

 

Tab. 3 Comparison of the adjustment results of the regression line weighted with a normal distribution by means 

of LSM and robust M-estimation methods  

          LSM       DANISH HUBER HAMPEL 

d d exper. ddeter  v  v p  v p  v p 

[m] [mm] [mm]  [mm] [mm] [mm]  [mm] [mm]  [mm] [mm]  [mm]

200.00 3.20 3.40 0 .20 0.2473 -0.05 0.2473 1 -0.05 0.2473 1 -0.05 0.2473 1 -0.05 

400.00 3.40 3.80 0.40 0.4145 -0.01 0.4145 1 -0.01 0.4145 1 -0.01 0.4145 1 -0.01 

600.00 4.50 4.20 -0.30 -0.3182 0.02 -0.3182 1 0.02 -0.3182 1 0.02 -0.3182 1 0.02 

800.00 5.30 4.60 -0.70 -0.7509 0.05 -0.7509 1 0.05 -0.7509 1 0.05 -0.7509 1 0.05 

1000.00 4.70 5.00 0.30 0.2164 0.08 0.2164 1 0.08 0.2164 1 0.08 0.2164 1 0.08 

1200.00 5.00 5.40 0.40 0.2836 0.12 0.2836 1 0.12 0.2836 1 0.12 0.2836 1 0.12 

1400.00 5.70 5.80 0.10 -0.0491 0.15 -0.0491 1 0.15 -0.0491 1 0.15 -0.0491 1 0.15 

1600.00 6.50 6.20 -0.30 -0.4818 0.18 -0.4818 1 0.18 -0.4818 1 0.18 -0.4818 1 0.18 

1800.00 6.30 6.60 0.30 0.0855 0.21 0.0855 1 0.21 0.0855 1 0.21 0.0855 1 0.21 

2000.00 6.40 7.00 0.60 0.3527 0.25 0.3527 1 0.25 0.3527 1 0.25 0.3527 1 0.25 
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Regression line parameters: 

Deterministic shape of the line    y = 3.0 [mm]+2,0*ppm*d 

Parameters of the line estimated by LSM   y = 3.1 [mm]+1,8*ppm*d 

Parameters of the line estimated by the Danish method y = 3.1 [mm]+1,8*ppm*d 

Parameters of the line estimated by the Huber method y = 3.1 [mm]+1,8*ppm*d 

Parameters of the line estimated by the Hampel method y = 3.1 [mm]+1,8*ppm*d 

 

Fig. 9 Graphical interpretation of the adjustment results of the regression line weighted with a normal 

distribution by means of LSM and robust M-estimation methods 

 

In case of the regression line non-weighted with any outlier the results of the adjustment by LSM and 

the robust M-estimation methods are identical as demonstrated in Tab. 4 and in the graphical 

interpretation of the processing results, Fig. 9. The comparison of the adjustment results of the 

modified regression line (weighted with an outlier) is presented in Tab. 4 and Fig. 10. 

 

Tab. 4 Comparison of the adjustment results of the regression line weighted with a normal distribution by means 

of LSM and robust M - estimation methods 

          LSM       DANISH HUBER HAMPEL 

    d d 

exper. 

ddeter  v  v p  v p  v p 

   [m] [mm] [mm]    [mm] [mm] [mm] [mm]  [mm] [mm]  [mm] [mm]  [mm]

200.00 3.20 3.40 0.20 -0.0436 0.24 0.2369 1.0000 -0.04  0.2369 1.0000 -0.04 0.2365 1.0000 0.0000 

400.00 3.40 3.80 0.40 0.2594 0.14 0.4090 1.0000 -0.01 0.4090 1.0000 -0.01 0.4088 1.0000 0.2167 

600.00 4.50 4.20      -0.30 -0.3376 0.04 -0.3189 1.0000 0.02 -0.3189 1.0000 0.02 -0.3189 1.0000 -0.4667 

800.00 5.30 4.60 -0.70 -0.6345 -0.07 -0.7468 1.0000 0.05 -0.7468 1.0000 0.05 -0.7466 1.0000 -0.8500 

1000.00 4.70 5.00 0.30 0.4685 -0.17 0.2253 1.0000 0.07 0.2253 1.0000 0.07 0.2257 1.0000 0.1667 

1200.00 5.00 5.40 0.40 0.6715 -0.27 0.2974 1.0000 0.10 0.2974 1.0000 0.10 0.2980 1.0000 0.2833 

1400.00 5.70 5.80 0.10 0.4745 -0.37 -0.0305 1.0000 0.13 -0.0305 1.0000 0.13 -0.0298 1.0000 0.0000 

1600.00 6.50 6.20 -0.30 0.1776 -0.48 -0.4584 1.0000 0.16 -0.4584 1.0000 0.16 -0.4575 1.0000 -0.3833 

1800.00 9.50 6.60 -2.90 -2.3194 -0.58 -3.0863 0.1059 0.19 -3.0863 0.4860 0.19 -3.0852 0.6483 -2.9667 

2000.00 6.40 7.00 0.60 1.2836 -0.68 0.3858 1.0000 0.21 0.3858 1.0000 0.21 0.3871 1.0000 0.5500 

 

Regression line parameters: 

Deterministic shape of the line    y = 3.0[mm]+2,0*ppm*d 

Parameters of the line estimated by LSM   y = 2.7[mm]+2,5*ppm*d 
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Parameters of the line estimated by the Danish method y = 3.1[mm]+1,9*ppm*d 

Parameters of the line estimated by the Huber method y = 3.1[mm]+1,9*ppm*d 

Parameters of the line estimated by the Hampel method y = 3.1[mm]+1,9*ppm*d 

 

 

Fig. 10 Graphical interpretation of LSM and the robust M-estimation methods on the example of a 

regression line weighted with an experimental outlier 

  

It is clear from the processing results that in this case the robust M-estimation methods came to 

identical results, herewith they assigned the largest correction and the smallest weight value to the 

outlier (Table 4); the graphical representations of the adjustment results of such modified line by 

means of the robust M-estimation methods are identical. 
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RESUMÉ 

V predloženom príspevku bol zámerne zvolený jednoduchý, ale o to názornejší príklad demonštrujúci 

pozitívne vlastnosti alternatívnych, v spracovaní geodetických meraní čoraz častejšie používaných a 

odporúčaných  robustných M - odhadovacích metód na báze iteratívneho vyrovnania metódy najmenších 

štvorcov s účelovo znižovaným, deformujúcim vplyvom týchto chýb na odhadované parametre a pre ich 

striktnejšiu identifikáciu v súbore meraných veličín. Matematická báza týchto metód sa pomerne nenáročne 

implementuje do algoritmu metódy najmenších štvorcov a v práci uvedené M–robustné odhady podľa Hubera, 

Hampela alebo dánskej metódy poukazujú na vzájomnú tesnosť ich výsledkov. 

Cieľom príspevku bolo poukázať na skutočnosť, že robustné odhadovanie metódy predstavujú silný 

nástroj na identifikáciu odľahlých meraní, ktoré z určitých objektívnych dôvodov prenikli do súborov dát 

meraných terénnych veličín. Záleží individuálne na každom prípade či odľahlé merania budú zo súborov 

meraných veličín eliminované, resp. či budú nahradené novými, nezávislými meraniami alebo analýzou ich 

genézy bude problém hlbšie skúmaný  pre podrobnejšie a objektívnejšie popísanie experimentálneho merania 

a dynamiky stavu obklopujúceho fyzikálneho prostredia komplexnejšími matematicko–štatistickými modelmi. 
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