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Abstract

The basis of mathematical analysis of geodetic measurements is the method of least squares (LSM),
whose bicentenary we celebrated in 2006. In geodetic practice, we quite often encounter the phenomenon when
outlier measurements penetrate into the set of measured data as a result of e.g. the impact of physical
environment. That fact led to modifications of LSM that have been increasingly published mainly in foreign
literature in recent years. The mentioned alternative estimation methods are e.g. robust estimation methods and
methods in linear programming. The aim of the present paper is to compare LSM with the robust estimation
methods on an example of a regression line.

Abstrakt

Zakladom matematickej analyzy dat je metoda najmensich $tvorcov (MNS), ktorej dvesté vyrodie sme si
pripomenuli v roku 2006. V geodetickej praxi sa v dosledku napr. vplyvu fyzikalneho prostredia pomerne
Casto stretdvame s javom, Ze do suboru meranych dat prenikaju odl'ahlé merania. Prave tato skutocnost’ viedla
k modifikaciam MNS ktoré sa v poslednych rokoch &oraz Gastejsie publikuji predovietkym v zahraniénej
literatire. Spominanymi alternativnymi odhadovacimi metddami, su napr. robustné odhadovacie metddy
ametody linearneho programovania. Napliiou predlozeného prispevku je porovnanie MNS s robustnymi
odhadovacimi metédami na priklade regresnej priamky.
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1 INTRODUCTION

As declared above the subject of the present contribution is to refer also to other ways of processing the
results of geodetic measurements as compared to the standard method being used, which is the least squares
method (LSM). Although this method is completely remade, when using it a "smudge" of undetected blunders
penetrated into the set of measured values may occur, mostly as a result of the undue impact of physical
environment on measurements. For this reason, the above mentioned alternative methods of statistical processing
appeared in geodetic practice. Given the fact that the alternative estimation methods are used primarily for the
detection of troublesome effects on measurements, the properties of these processing methods are applied to an
illustrative example of a regression line weighted first by a normal distribution and then to an example of a line
weighted by an experimental outlier. In this paper the following methods are compared with LSM: the robust M-
estimator by Huber, the robust M-estimator by Hampel and the Danish method.

2 THE METHOD OF LEAST SQUARES

The need of an adjustment calculus and the discovery of LSM itself resulted from advances in technology
for measuring and accumulation of surveying material in the field of astronomy and geodesy at the end of the
17th century. The discoverer of the least squares method, having become a classic tool for the theory of errors, is
Carl F. GAUSS (1777-1855) [7]. The essence of this method consists in minimizing the sum of squared
deviations occurred during the measurement of the behaviour of a quantity or physical phenomenon (3). The
least squares method results from the condition of a so-called L2-norm (2), whereas the norm is the number
assigned to each n-dimensional vector v=(v,,v,..v,) characterizing its size in some sense [1] , [2]. In geodesy,

the objective functions of the following type are used most frequently:

o |-

p(v)—[gvifj ~min. ie (1) (1)

where:
p - parameter defining the special type of objective function,
in ; - vector of corrections.

Assuming p=2 (L2 norm) the objective function is as follows:
1

PV )=[§|vi|2]2 (2)
leading to the least squares method that, under certain conditions, leads to the most reliable estimators of

unknown quantities, and hence this is the method most commonly used in geodetic practice for processing
measured data. The mathematical formulation of this method is as follows:

> p,v7 =v'Pv =min.

A p, O 0
0 .
v=| 2| pe P k const., fori=1,2, ... n 3)
v, 0 0 0 p,

where:

Vv - vector of corrections

P - matrix of weighting coefficients (weights of p measurements) being ordered along the diagonal of
the weighting matrix.

The measurement weights are proportional numbers, qualitatively evaluating the achieved
measurement result. Introducing the weights we prefer a more accurate measurement that takes a share
in the measurand adjustment.
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The least squares method will also be explained on a one-dimensional linear model, while all
the estimation methods will be demonstrated on an example of a regression line. Let the following
linear relationship exists between the variable y, variables X (Fig. 1) and the random component u;:

Vi = B+ BXy+ B Xy ++ B Xy +U,  kdei=1,2---n
y =0+ X +u linearmodel equation

(4)

where:
y i - dependent variables

X1, Xy, ... X - independent variables
B o - model parameter expressing the value attained by y when X
equals zero, called intercept

[ - regression coefficient indicating the slope of the regression line, i.e. the rate at which y; increases
per unit increase in X 1 X 5, ... X

uU; — random component.

10 T T T
g [ 1]
[ y= B0+ B X {
8
[%]
o7
K
= 6
g B jednotiek
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o 4 1 jednotka
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X- independent variables
Fig. 1 One-dimensional linear model

We may rewrite the model using the following matrix notation:
y=Xp+u, ®)

where:

y - n-dimensional vector of the dependent variables,
X - matrix (k +1) independent variables

u - n-dimensional vector of the random components,

B - unknown (unobservable) parameters we need to determine; in geodesy
we use the term estimators.

Thus, when deriving an estimator we result from the matrix notation (5). The problem lies in finding
the estimator 4 so that the estimated regression line y=Xj+u approximates best the regression line
y=XpB+u.

The following applies to the difference y-y, the so-called vector of residuals (the vector of
corrections in geodesy) v=v,,v,,---,v, :

N
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v=y-y=y-XB z&oho ©6)
y:Xva
whereof
Using LSM, we search for the estimator ﬁ of the vector of parameters g so that the sum of the
squared residuals (3) is minimum.
Sv=vv= =X - XP) (7)

Multiplying (7) we get:

VIv=yTy—2X BTy + XTBTy -y XB+2X BT XB— X B" XB

=yTy-X"BTy -y Xp+X B Xp. ©
Let us differentiate the equation (8) with respect to ﬁT :
?TTTVZ‘XTWXTXB (©)
If we set the derivative (9) equal to zero, then we obtain the relationship
X"Xp=X"y (10)

that is the matrix notation of normal equations. The matrix X' X is nonsingular, i.e. it is invertible.
Therefore, the following applies to the vector of unknown parameters from the relation (10):

B=(X"X)"X"y (11)
If the line equation (Fig. 2) has the generally known form
y=aX+b (12)

where a and b are the searched estimators to be determined, the line equation has the following form

in a matrix notation:
y=AX+v, (13)

where:

v: vector of corrections,

A: configuration matrix, the matrix of partial derivatives,

X: searched estimators (in geodetic calculations, X is replaced by the parameter @,
these are coordinates as a rule).
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y-dependent variables

0 200 400 600 800 1000 1200 1400 1600 1800 2000
X- independent variables
Fig. 2 Regression line in general

Whereas the relationships between the measured and the unknown variables are expressed by an
intermediary function of the searched unknown parameters (estimators), the given model may be
rewritten into the following form:

y=Il+v

. (14)
l+v=A0
configuration matrix
A=Y (15)
oda ob
=y
l+v=A0O (16)
Y1 vy %1
yZ v2 X21 |:éj|
+ = A
: 2l b
yn vn an
The following applies to the vector of residuals:
V=AO-I, a7
which leads to the Guss-Markov model:
v=AO-I (18)

Z|:U§Q|

When using LSM the following applies to the sought estimators after adjusting the parameters
(indices):
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6=(A"Q*A) *(ATQ; ")
matrix Q, = I (uni) . (19)
6 =(ATA)'(ATI)---analogousy (11)

3 ROBUST ESTIMATION METHODS

In the second half of the last century unconventional estimation methods were developed in the
theory of linear programming in addition to the standard estimation methods. In those methods, other
variable, not the arithmetic mean, is selected as the parameter of centrality. From these methods, the
so-called robust estimation methods are preferred in geodetic practice [10], [9], [8] . [6] , [5] , [4].

Two types of robust estimations are known: robust estimations applied on the basis of LSM,
when the sum of squared corrections is replaced by more appropriate correction functions: e.g.
maximum credible estimators (robust M - estimators) [10] , [9] , [8] , [6] , [5] , [4] and pure robust
methods that include linear programming methods, such as a simplex method.

The M robust method of adjustment on the principle of LSM occurs when there is no minimized
function v'v in the estimation process, but another suitably chosen correction function p(v,) called the
function of losses (estimators).

plv)=min (20)

that generates the so-called influence function w(v,) for the estimation process, characterizing
the impact of errors on the adjusted values, which the following applies to:

Z\P(Vi)ZO ’ (21)
where:
_ 6P(Vi)
w(v,) == (22)

In order to be robust, the adjustment should be performed by an iterative method with variable
weights, i.e., so that the weights for observables are determined as functions of corrections in each
iteration step
Y(v)

V )

p(Vi) = (23)

where p(v,) is the weighting function in the adjustment process solution. The iterative robust
estimation algorithm proceeds as follows:

1. In the first iteration step the standard LSM adjustment with weights p® =1 is carried out ((1)-

the iterative step for the i-th observable), in case of heterogeneous measurements it is
necessary to perform their homogenization by means of the matrix of the square roots of the

weights VP (this feature is available in a MATLAB program - rootm (P)) [4] .
2. From the corrections obtained in the first iteration step using the weighting function p(v,) the
new weights are determined to be used in the next step and by analogy in further ones.

New weights are created according to a relevant regulation for the weighting function up to the
end of the iteration process being selected with a reasonable number of steps so that the acceptable
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convergence of weights occurs in the last steps. The weighting functions are determined based on
previously theoretically and empirically investigated and verified different assumptions and for
different kinds of measurements.

Using the robust estimation techniques in the processing of horizontal geodetic control networks
a great deal of attention was paid to v [4]; for that reason the present contribution demonstrates the
following robust estimation methods with their experimented and verified constants on an example of
a regression line [3], [4],[5], [6], [8],[9],[10] : the robust M - estimator by Huber, the robust M -
estimator by Hampel and the Danish method.

2.1 Robust M-estimator by Huber
This estimator uses the following functions and relevant tuning- damping constants

gstimation function

1.

Zv V| <k
p(v) = 2 L The valueof thedampingconstantisusual Iyl 5 (24)
kV-=k* |v=k
2
influence function
k
=2 M (25)
o) |ksignv) |v|=k
weighting function
) 1 |v<k
v
W _ 26
p(V) i1 sk (26)

v

The behaviours of these individual functions may be illustrated graphically as well [4] , [10]. Due to the
scope of the contribution and the fact that the principle of robust M-estimation methods consists in the repetition
of LSM with gradual changing the weights according to the relevant regulation (23) at the used processing
methods, we present only the graph of the weighting function.
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P(v) - viihy jednotlivy

0.2

v - opravy

Fig. 3 Graphic behaviour of the weighting function for the robust M-estimator by Huber

2.2 Robust M-estimator by Hampel
This estimator uses the following functions and relevant damping constants:

estimation function

pV) =
1, M<a
2
alv|-=a’ a<lv<b
abféa2 + (27)
c—|v Y’
a(c—b{l—[J] ] b<v<c
c-b
1 1
ab—za2+5(c—b)a c<|v
influence function
v IV <a
a.signv) a<lv<b
¥(v)= c—|v| ) (28)
a——signv) b<pv<c
c-b
0 c<M
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weighting function

1 |v|<a
ﬁ a§|v|<b
p(V): c || (29)
a. b<<c
(c-b)v
0 cs|v|

. / N\

Y / \

p(v) - vahy merani

v - opravy

Fig. 4 Graphic behaviour of the weighting function for the robust M-estimator by Hampel

2.3 Danish method

The strategy of the Danish method is that it reduces (shrinks) the impact of remote
measurements (outliers) on the estimates of quantities. The principle of this method is based on the
indication of the outliers by corresponding major corrections. After the standard adjustment of the
estimations of the first-order parameters by the method of least squares through the Gauss - Markov
model, the a priori weights of measurements are replaced by correction functions. The next iteration
step is the adjustment of the initial weights of measurements according to the following relation

Pa=Pip(V) =12 (30)

which results in the increase of the absolute values of outlier measurements, while reducing their
deformation impact on the network geometry. The iterative cycle is repeated until expected results are
achieved. In the current horizontal geodetic control networks the solution requires no more than (10-
15) iterations [4] , [3]. For this method the following functions and standards have been derived:

influence function:

v vj<c
\'P(V) = *aMb (31)

At present different types of exponential functions are used for the weighting function [3]. In
order to demonstrate this method, the following weighting function was used in the practical solution:
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weighting function

(32)

with these standards:
for the 1st iteration step a=0 ,
for the 2nd and 3rd iteration steps a=0.05 and throughout the iterative process b=3,c=3.

Thus, the equation (32) is defined by the following interval:

—c<|vi|\/E/so<c (33)

which the weights of measurements are started to be determined from. The constant ¢ is chosen
usually between 2 to 3 and depends on the redundancy (excess measurements) determined by the
Gauss - Markov model and the quality of measurands. If the constant ¢ <2 the method being used is
robust, in case ¢> 3 the processing method is changed to LSM.

4 EMPIRICAL DEMONSTRATION

This part of the paper is devoted to examining the properties of individual estimation methods
using an example of a regression line that may be represented from the geodetic point of view, e.g. by
the electronic rangefinder equation.

4.1 Adjustment of the regression line through LSM

The properties of estimation methods were studied on an illustrative example of a regression
line y=ax+b whose modified form o, =b+ad.ppm is normally used in geodesy to characterize the
accuracy of electronic rangefinders, where the parameter a characterizes the effect of independent
errors and the parameter b characterizes the effect of errors dependent on measured distance. The
constant ppm (parts per million - means "out of million") is equal to 10°. The adjusted regression line
in the form y=2ppmd+3[mm] was weighted with a normal distribution by means of the least squares
method (Fig. 5).

—E— STD=3[mm]* 2ppmed
° value

_—

STO[mm]

1000
dim]

Fig. 5 Deterministic model of the regression line weighted with a normal distribution
Note: STD=o,,
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When using this method the basis is the model 1+v=A® leading to the famous Gauss-Markov model
[1]. The results of adjustment of the regression line by means of LSM are demonstrated in Table 1, the
graphical interpretation of the results obtained is shown in Fig. 6.

8 T T T
I I I

—E5— STD=3[mm]* 2ppm*d
O experimental value
line by LSM

0 200 400 600 800 1000 1200 1400 1600 1800 2000
d[m]

Fig. 6 Graph of theoretical values of the regression line adjusted by means of LSM

Tab. 1 Adjustment results of the regression line weighted with a normal distribution by means of LSM

Theoretical line LSM
noof | 9 | g | ow | 8 | V| A
m. [m] [mm] [mm] [mm] [mm] [mm]
1. 200.00 3.20 3.40 0.20 0.2473 -0.05
2. 400.00 3.40 3.80 0.40 0.4145 -0.01
3. 600.00 4.50 4.20 -0.30 -0.3182 0.02
4, 800.00 5.30 4.60 -0.70 -0.7509 0.05
5. 1000.00 4.70 5.00 0.30 0.2164 0.08
6. 1200.00 5.00 5.40 0.40 0.2836 0.12
7. 1400.00 5.70 5.80 0.10 -0.0491 0.15
8. 1600.00 6.50 6.20 -0.30 -0.4818 0.18
9. 1800.00 6.30 6.60 0.30 0.0855 0.21
10. 2000.00 6.40 7.00 0.60 0.3527 0.25

Regression line parameters:
Deterministic shape of the line y = 3,0 [mm] + 2,0*ppm*d
Parameters of the line estimated by LSM y = 3,1 [mm] + 1,8*ppm*d

Note:
STD=0, =b+ad.ppm=2d.ppm+3

A=g—-V, €= o4 —0¢q

determ.  exp..
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Given the fact that the present contribution is devoted to the issues of estimation methods, which allow
to reveal the so-called outlier measurements in the set of measured data and for which we do not select
the arithmetic mean as the centrality parameter, the regression line is deliberately weighted with just
one outlier, in order to track the performance of such methods, Fig. 6. Such modified regression line
was adjusted first by the method of least squares and then by the iteration-based robust M-estimation

methods.

—&— STD=3[mm]* 2ppm*d
O ey tal values 2 y=ax+b

STO[mm]
\
\
STD[mm]

i i i i i
o 200 200 600 800 ;;J':J‘? 1200 1400 1600 1800 2000 0 200 200 500 800 1000 1200 1400 1600 1800 2000
I[m]

; i i i i

Fig. 7 Graph of theoretical values of the proposed regression line with an experimental outlier

The graphic interpretation of the results obtained by the adjustment of the modified regression line
processed by LSM is shown in the following figure:

T
—8— STD=3[mm]* 2ppm*d
° lues

by LSM

STO[mm]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
dim]

Fig. 8 Graphical interpretation of the adjustment results of the regression line with an experimental outlier
by LSM

The numerical results of the line adjustment by the least squares method is presented in Tab. 2.
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Tab. 2 Adjustment results of the regression line with an experimental outlier by LSM

Theoretical line LSM
no. of m. d Od Od & v 4
determ. exp..

[m] [mm] | [mm] | [mm] | [mm] | [mm]
1. 200.00 3.20 3.40 0.20 | -0.0436 | 0.24
2. 400.00 3.40 3.80 0.40 0.2594 0.14
3. 600.00 4.50 4.20 -0.30 -0.3376 | 0.04
4, 800.00 5.30 4.60 -0.70 | -0.6345 | -0.07
5. 1000.00 | 4.70 5.00 0.30 0.4685 | -0.17
6. 1200.00 | 5.00 5.40 0.40 0.6715 | -0.27
7. 1400.00 | 5.70 5.80 0.10 0.4745 | -0.37
8. 1600.00 | 6.50 6.20 -0.30 | 0.1776 | -0.48
9. 1800.00 | 9.50 6.60 -290 | -2.3194 | -0.58
10. 2000.00 | 6.40 7.00 0.60 1.2836 | -0.68

Regression line parameters:
Deterministic shape of the line y = 3.0 [mm] + 2.0*ppm*d
Parameters of the line estimated by LSM y = 2.7 [mm] + 2.5*ppm*d

4.2 Regression line adjustment by means of robust M-estimation methods

The robust M-estimator methods along with the Denmark method are based on the principle of
the least squares method. These are iterative methods (in which the adjustment process is repeated
several times); their principle consists in so-called “reweighting”, which means that the weights are
being changed intentionally. In the first iteration step, the standard method of least squares is
performed, where the weight of each measurement is the same and equal to one. In the next step, the
weights are correction functions. First the regression line weighted with a normal distribution and then
the regression line weighted with an outlier was adjusted through the above robust M-estimation
methods and the Danish method.

The adjustment results of both lines are shown in Tables 4 and 5, together with the graphical
interpretation of processing results.

Tab. 3 Comparison of the adjustment results of the regression line weighted with a normal distribution by means
of LSM and robust M-estimation methods

LSM DANISH HUBER HAMPEL

d G4 eXper. oqdeter € \ A \ p A \ p A \ p A
[m] [mm] [mm] [mm] [mm] [mm] [mm] | [mm] [mm] [mm] [mm]
200.00 3.20 3.40 0.20 0.2473 -0.05 0.2473 1 | -0.05 0.2473 1 -0.05 02473 |1 -0.05
400.00 3.40 3.80 0.40 04145 | -0.01 | 04145 | 1 | -0.01 | 04145 [1]| -001 04145 |1| -001
600.00 4.50 4.20 -0.30 -0.3182 0.02 -0.3182 1 0.02 -0.3182 |1 0.02 -0.3182 |1 0.02
800.00 5.30 4.60 -0.70 -0.7509 0.05 -0.7509 1 0.05 -0.7509 |1 0.05 -0.7509 |1 0.05
1000.00 4.70 5.00 0.30 0.2164 0.08 02164 | 1 | 008 | 02164 |1| 008 02164 [1| 008
1200.00 5.00 5.40 0.40 0.2836 0.12 0.2836 1 0.12 0.2836 1 0.12 02836 |1 0.12
1400.00 5.70 5.80 010 | -0.0491 015 | 00491 | 1 | 015 | -00491 [1| 015 | -00491 [1]| 015
1600.00 6.50 6.20 -0.30 -0.4818 0.18 -0.4818 1 0.18 -0.4818 |1 0.18 -0.4818 |1 0.18
1800.00 6.30 6.60 0.30 0.0855 0.21 0085 | 1 | 021 | 00855 |1| o021 0085 [1]| 021
2000.00 6.40 7.00 0.60 0.3527 0.25 0.3527 1 0.25 0.3527 1 0.25 0.3527 |1 0.25
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Regression line parameters:

Deterministic shape of the line y = 3.0 [mm]+2,0*ppm*d
Parameters of the line estimated by LSM y = 3.1 [mm]+1,8*ppm*d
Parameters of the line estimated by the Danish method y = 3.1 [mm]+1,8*ppm*d
Parameters of the line estimated by the Huber method y = 3.1 [mm]+1,8*ppm*d
Parameters of the line estimated by the Hampel method y = 3.1 [mm]+1,8*ppm*d

8 T T T T T
—&— STD=3[mm]* 2ppm*d
O weighted points
regression line by LSM

regression line determined by the Danish method
~— regression line determined by the method by HUBER
—regression line by the method by HAMPE g

[} 200 400 600 800 1000 1200 1400 1600 1800 2000
dim]

Fig. 9 Graphical interpretation of the adjustment results of the regression line weighted with a normal
distribution by means of LSM and robust M-estimation methods

In case of the regression line non-weighted with any outlier the results of the adjustment by LSM and
the robust M-estimation methods are identical as demonstrated in Tab. 4 and in the graphical
interpretation of the processing results, Fig. 9. The comparison of the adjustment results of the
modified regression line (weighted with an outlier) is presented in Tab. 4 and Fig. 10.

Tab. 4 Comparison of the adjustment results of the regression line weighted with a normal distribution by means
of LSM and robust M - estimation methods

LSM DANISH HUBER HAMPEL
d G4 ogdeter € v A v P A v P A v p A
exper.

[m] [mm] | [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] |} [mm] [mm]
200.00 3.20 3.40 0.20 -0.0436 0.24 02369 | 10000 | -0.04 02369 | 10000 | -0.04 |02365 | 1.0000 | 0.0000
£00.00 3.40 3.80 0.40 0.2594 014 04090 | 1.0000 | -0.01 04090 | 1.0000 | -0.01 |0.4088 | 1.0000 | 0.2167
600.00 450 420 -0.30 -0.3376 0.04 -0.3189 | 1.0000 | 0.02 -0.3189 | 1.0000 | 0.02 |-0.3189 | 1.0000 | -0.4667
800.00 5.30 4.60 -0.70 -0.6345 007 | -0.7468 | 1.0000 | 0.5 -0.7468 | 1.0000 | 0.05 |-0.7466 | 1.0000 | -0.8500
100000 | 247 5.00 0.30 0.4685 -0.17 02253 | 1.0000 | 0.07 02253 | 10000 | 007 02257 | 1.0000 | 0.1667
120000 | 500 5.40 0.40 0.6715 -0.27 02974 | 1.0000 | 0.10 0.2974 | 10000 | 0.0 02980 | 1.0000 | 0.2833
140000 | 57 5.80 0.10 0.4745 037 | -00305 | 10000 | 013 -0.0305 | 1.0000 | 0.3 |-0.0298 | 1.0000 | 0.0000
1600.00 | 630 6.20 -0.30 01776 048 | -04584 | 10000 | 0.6 -0.4584 | 1.0000 | 016 |-0.4575 | 1.0000 | -0.3833
1800.00 | 950 6.60 -2.90 -2.3194 058 | -30863 | 01059 | 0.9 -3.0863 | 04860 | 019 |-30852 | 06483 | -2.9667
2000.00 | 640 7.00 0.60 1.2836 -0.68 03858 | 1.0000 | o0.21 03858 | 10000 | 021 03871 | 1.0000 | 0.5500

Regression line parameters:

Deterministic shape of the line y = 3.0[mm]+2,0*ppm*d
Parameters of the line estimated by LSM y = 2.7[mm]+2,5*ppm*d
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Parameters of the line estimated by the Danish method y = 3.1[mm]+1,9*ppm*d
Parameters of the line estimated by the Huber method y = 3.1[mm]+1,9*ppm*d
Parameters of the line estimated by the Hampel method y = 3.1[mm]+1,9*ppm*d

10 T T T T T
—&— STD=3[mm]* 2ppm*d
O wei nts

termined by the method by HUBER
— line by the method by HAMPEL

STD[mm]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
dim]

Fig. 10 Graphical interpretation of LSM and the robust M-estimation methods on the example of a
regression line weighted with an experimental outlier

It is clear from the processing results that in this case the robust M-estimation methods came to
identical results, herewith they assigned the largest correction and the smallest weight value to the
outlier (Table 4); the graphical representations of the adjustment results of such modified line by
means of the robust M-estimation methods are identical.
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RESUME

V predloZzenom prispevku bol zamerne zvoleny jednoduchy, ale o to nazornejsi priklad demonstrujici
pozitivne vlastnosti alternativnych, v spracovani geodetickych merani Coraz CastejSie pouzivanych a
odportcanych robustnych M - odhadovacich metdd na baze iterativneho vyrovnania metédy najmensich
Stvorcov s ucelovo znizovanym, deformujicim vplyvom tychto chyb na odhadované parametre a pre ich
striktnejSiu identifikaciu v subore meranych veli¢in. Matematickd bdza tychto metéd sa pomerne nenarocne
implementuje do algoritmu metddy najmensich Stvorcov a Vv praci uvedené M—robustné odhady podl'a Hubera,
Hampela alebo danskej metddy poukazuji na vzajomnu tesnost’ ich vysledkov.

Cielom prispevku bolo poukazat' na skutoCnost, Ze robustné odhadovanie metédy predstavuju silny
nastroj na identifikdciu odlahlych merani, ktoré z ur€itych objektivnych dovodov prenikli do suborov dat
meranych terénnych veli¢in. Zalezi individualne na kazdom pripade ¢i odl'ahlé merania budu zo suborov
meranych veli¢in eliminované, resp. ¢i budu nahradené novymi, nezavislymi meraniami alebo analyzou ich
genézy bude problém hlbsie skimany pre podrobnejSie a objektivnejSie popisanie experimentalneho merania
a dynamiky stavu obklopujaceho fyzikalneho prostredia komplexnejs$imi matematicko—Statistickymi modelmi.
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