
35

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

TRANSFORMATION OF THEMATIC CARTOGRAPHY DOMAIN
ONTOLOGY INTO JAVA INTERFACES AND CLASESS

TRANSFORMACE DOMÉNOVÉ ONTOLOGIE TEMATICKÉ
KARTOGRAFIE NA JAVA ROZHRANÍ A TŘÍDY

Tomáš PEŇÁZ
1
, Radek DOSTÁL

2

1
Ing., Ph.D., Department of Geoinformatics, Faculty of Mining and Geology,

VSB-Technical University of Ostrava,17. listopadu 15/2172, Ostrava Poruba, tel. (+420) 597 325 458

e-mail tomas.penaz@vsb.cz

2
Ing., Department of Geoinformatics, Faculty of Mining and Geology,

VSB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava Poruba

e-mail radek.dostal@gmail.com

Abstract

The article deals with the transformation of an experimental ontology, classifying selected declarative

knowledge for the domain of thematic cartography, into classes and interfaces of the Java language. The reason

for this transformation is to transfer the declarative knowledge from the field of thematic cartography into the

form of a program code in the Java programming language. The resulting program code containing declarations

of interfaces and classes will be further used for creating a software application for an intelligent system for the

interactive support of thematic map creation. The upcoming pilot project of this knowledge system is designed

for the users without necessary cartographic knowledge, which will allow them to create interactively thematic

maps and provide them with the support. The purpose of the use of such a tool is to prevent the users from

deviating from established cartographic rules and avoid the occurrence of gross errors in resulting maps.

A properly compiled knowledge ontology facilitates the design of the prepared intelligent cartographic

application, as the use of cartographic knowledge is enabled based on the automated transformation into the

program code in the Java language. The generated program code contains declarations of basic concepts of

thematic cartography, their structuring into classes corresponding to the source structures described in the

ontology. The code also contains descriptions vertical and horizontal relations between the declared classes and

also the interface for access to these classes and relations. The automated transformation of ontology into the

Java code is not completely lossless. The examples of a transformation of individual components of ontology

(classes, individuals, and object and datatype properties) into interfaces and classes in Java show the differences

occurred during the transfer of the declarative knowledge into the program code. From these examples it is clear

that the elements of ontology component description are or are not transformed into the Java code in full. The

article proposes recommendations how to optimize the knowledge description on the part of ontology in order to

minimize possible losses of the transformation of knowledge into the Java code.

Abstrakt

Článek pojednává o transformaci experimentální znalostní ontologie, soustřeďující vybrané deklarativní

kartografické znalosti pro doménu tematické kartografie, na třídy a rozhraní jazyka Java. Důvodem transformace

je přenos deklarativních znalostí z oblasti tematické kartografie, do podoby programového kódu v jazyce Java.

Vzniklý programový kód, obsahující deklarace rozhraní a tříd, bude dále využit pro tvorbu programové aplikace

inteligentního systému pro interaktivní podporu tvorby tematických map. Připravovaný pilotní projekt tohoto

znalostního systému je určen pro uživatele bez potřebných kartografických znalostí, kterým umožní interaktivně

vytvářet tematické mapy a poskytne jim při tom podporu. Smyslem využití takového nástroje je zamezit

uživateli odchýlení od zavedených kartografických pravidel a zabránit vzniku hrubých chyb ve výsledné mapě.

Vhodně sestavená znalostní ontologie usnadňuje návrh připravované inteligentní kartografické aplikace,

neboť využití kartografických znalostí je umožněno na základě automatizované transformace do podoby

programového kódu v jazyce Java. Vygerovaný programový kód obsahuje deklaraci základních pojmů tematické

kartografie, jejich strukturování do tříd, které odpovídají zdrojovým strukturám popisovaným v ontologii. Kód

obsahuje rovněž popis vertikálních a horizontálních vztahů mezi deklarovanými třídami a dále též rozhraní pro

přístup k těmto třídám a vztahům. Automatizovaná transformace ontologie na Java kód však není zcela

bezztrátová. Na příkladech transformace jednotlivých komponent znalostní ontologie (tříd, jedinců, objektových

a datotypových vlastností) na rozhraní a třídy v jazyce Java, jsou ukázány odlišnosti při přenosu deklarativních

mailto:tomas.penaz@vsb.cz
mailto:tomas.penaz@vsb.cz
mailto:tomas.penaz@vsb.cz
mailto:tomas.penaz@vsb.cz
mailto:tomas.penaz@vsb.cz
mailto:tomas.penaz@vsb.cz
mailto:tomas.penaz@vsb.cz
mailto:radek.dostal@gmail.com
mailto:radek.dostal@gmail.com
mailto:radek.dostal@gmail.com
mailto:radek.dostal@gmail.com
mailto:radek.dostal@gmail.com
mailto:radek.dostal@gmail.com
mailto:radek.dostal@gmail.com

36

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

znalostí do programového kódu. Z uvedených příkladů je patrné, které prvky popisu komponent ontologie jsou či

nejsou transformovány do Java kódu plnohodnotně. V článku jsou navržena doporučení optimalizace popisu

znalostí na straně ontologie s cílem minimalizovat případné ztráty při transformaci znalostí do kódu v jazyce

Java.

Key words: declarative knowledge, intelligent system, Java, ontology, OWL, taxonomy, thematic

cartography, thematic map.

 1 INTRODUCTION

One of the possibilities of using artificial intelligence in cartography is the development of intelligent

systems to support users in creating interactive maps. A simple but effective way of integrating intelligence into

the environment of tools for interactive creation of maps is the implementation of optimization algorithms. An

example is the algorithm implementing the Jenks' optimization method (Dent, 2009; Slocum, 2009), known from

the environment of ArcGIS Desktop, Quantum GIS, and other products. The method allows the users the

automated design of classes during classifying a statistical ensemble according to selected quantitative

characters. From a series of classification methods disposed by the products, the Jenks' optimization method is

offered to users as a default classification method in ArcGIS.

A different task of intelligent system may be the mediating of access to a cartographic knowledge base to

the users without corresponding cartographic education (Brus, 2009). An intelligent system, complementing the

software tool for creating maps, can influence the user creating a map based on the ongoing interaction in

different ways. The simplest method of communication is to provide users with simple tips and simultaneous

input of related requirements through a wizard. This article is based on the experience gained in solving the

research project Intelligent System for Interactive Support of Thematic Map Design (hereinafter referred to

as the project).

The design and preparation of an intelligent system cooperating interactively with the user needs to work

with the technical vocabulary used in (thematic) cartography. A set of used terms must be sufficiently rich,

apposite and sophisticated, in order to cover the corresponding part of issues included in the functionality of the

intelligent system. Knowledge ontologies that are a subject of ontology modelling may be used as a knowledge

database for implementing intelligent systems in various fields of human activity (domains). The use of

ontologies facilitates the design and implementation of knowledge systems (Uschold, 1996). Knowledge

ontologies are used as an environment suitable for the static description of a concept which includes declarative

knowledge (Apt, 1988), related to the concepts used in the domain for the identification and description of

objects and phenomena. The declarative knowledge includes a list of definitions of concepts, the classification of

the concepts into groups, called classes, based on their similarity according to common characteristics, and the

arrangement of the concepts and classes into a class hierarchy. Finally, it is important to express relations

between the classes based on object properties, containing certain concepts, and the expressions of disjoint of

sibling classes included in a superclass. The declarative knowledge includes also the expression of equivalence

between classes and properties and the description of property restrictions.

During the analysis of the project issue, we did not manage to find any suitable domain ontology of

thematic cartography, which could be used for the practical implementation of the intelligent system. Based on

the search activity, we could not get relevant information how to approach to the design and preparation of the

ontology of thematic cartography. The exception is some published information (Iosifescu-Enescu, 2005; Smith,

2010; Dobešová, 2011), which, however, has only a character of a general overview of the issue, or retrieval, and

thus cannot be a sufficient basis for developing this concept. Due to the fact that the activities aimed at full

formalization of domain knowledge of thematic cartography have not progressed so far, we have designed and

built an own experimental ontology (Peňáz, 2010) for this field. In designing the knowledge ontology, we

followed general recommendations (Gruber, 1993; Noy, 2001; Svátek, 2009) to obtain the best and perfect

description of the issue of the thematic cartography domain. For processing the ontology we used the OWL-DL

language (Patel-Schneider, 2004; Smith, 2004; Bechhofer, 2004). Although we had originally intended to use the

new version of the language OWL 2 and the corresponding ontology editor Protégé 4.1, we omitted this goal and

created the ontology interactively in the editor Protégé 3.4.4 (Horridge, 2004). The reason was the fact that there

are no appropriate tools in the ontology editor Protégé 4.1 for the subsequent transformation of OWL into Java.

In order the declarative knowledge, concentrated in the knowledge ontology, to be available to

programmers for further development, we had to convert the experimental ontology into a program code in Java.

The obtained program code should include the declarations of classes and interfaces required for their use in the

further development of the software application. However, the conversion of ontology components into the Java

code is not completely lossless. The following chapters provide the findings we gained during this

transformation. At the same time, they offer the description of the procedure of transforming the contents of the

knowledge base into Java interfaces and clasess.

37

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

It is also to be noted at the beginning of the article that in publications (Studer, 1998; Kalyanpur, 2004;

Gobin, 2010; Frenzel, 2011) also the phrase ontology mapping is used in connection with the described

transformation of ontology into the Java code. The original meaning of the word mapping, however, comes from

cartography, and therefore in connection with the contents of the article the term transformation, which is used

mainly in this context, is more appropriate.

The article's topic is on the border of several disciplines, including in particular knowledge engineering

and cartography. The article is primarily addressed to the professional community of specialists in

geoinformatics and GIS application determined for digital cartography.

 2 METHOD AND TOOLS FOR TRANSFORMATION OF ONTOLOGY COMPONENTS

The aim of the described transformation is to create a program code in Java, which includes collections of

Java interfaces and classes based on the prepared experimental ontology of (thematic) cartography. The

interfaces and classes should be structured hierarchically, but need not necessarily exactly correspond with OWL

under all conditions (Puleston, 2008). An instance of a Java class should represent as accurately as possible an

instance of a single ontology class with most of its properties (Kalyanpur, 2004). The transformation should

therefore ensure the transfer of an important part of declarative knowledge from the ontology (knowledge base)

to the program code of a knowledge application (Fig. 1). In (Kalyanpur, 2004), a notice of the existence of major

semantic differences between the description of knowledge formalized by means of description logics (Baader,

2003, 2007) used in ontology and Object Oriented Systems can be found. The Object Oriented Systems include

Java. The experience with transforming OWL into a Java code is also stated by (Stevenson, 2011; GOBIN,

2010). The OWL specification is available on the website of the W3C consortium (Patel-Schneider, 2004; Smith,

2004).

Generating Java classes and interfaces is an automated or partially automated operation and can be

implemented using the standard function Generate of the Protégé-OWL Java Code, which is available in the

editor Protégé 3.4.4.

The OWL editor Protégé (Knublauch, 2004) is a software tool of the open-source category, developed at

the Stanford Center for Biomedical Informatics Research. It is the environment for development of knowledge-

based systems that has been developed for almost twenty years (Gennari, 2003). The Protégé model is based on a

simple but flexible metamodel (Noy, 2000), which is comparable with object-oriented and frame-based models.

In fact, it may represent ontologies consisting of classes, properties, characteristics of properties (aspects and

limitations) and individuals (instances). The Protégé editor provides an open Java API to query and handle

models. Protégé also offers a highly scalable interface allowing users to create hundreds of thousands of

ontology classes (Knublauch, 2004).

Fig. 1Protégé and the knowledge base (adjusted according to Husáková, 2006)

An important feature of the transformation is the ability of the function Generate of the Protégé-OWL

Java Code to ensure the correct syntax of the resulting Java code. If the creator of ontology, as a result of

ignorance of the Java language syntax, uses a hyphen in the name of an OWL component (which Java does not

enable in key words) the conversion program ensures correct writing of the Java code, by replacing the hyphen

with an underscore. The automated corrections on the part of the transformation function can be avoided by

excluding the hyphen character when giving names to ontology components.

38

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

 3 TRANSFORMATION OF CLASSES

The purpose of the transformation of classes declared in ontology is to create interfaces, and also classes

that will implement these interfaces in the Java language. When performing the transformation, the rule is valid

that for each named class of OWL just one interface and just one class is created in Java. Anonymous classes,

which OWL allows to create as a result of set operations over the named or anonymous classes (Bechhofer,

2004), cannot be transformed into the Java code.

For a class in OWL, holding its position at the highest level in the hierarchy of classes, the interface is

derived from the interface OWLIndividual (public interface DomainConcept extends

OWLIndividual {}) and the appropriate class is derived from the class AbstractCodeGeneratorIndividual

(public class DefaultDomainConcept extends AbstractCodeGeneratorIndividual

implements DomainConcept {}).

Other interfaces and classes are derived depending on the location in the hierarchy recorded in OWL. It is

vital just in order some of the information carried by the OWL classes to be transferred into the Java classes.

Unlike the classes in Java, the OWL classes do not dispose of any methods. However, they can have defined

datatype properties (Chapter 4 Transformation of datatype properties), which are inherited in the hierarchy of

OWL by a class from a superclass. The transformation of OWL into the Java code ensures each datatype

property to be transformed into a set of methods of Java classes. These derived Java classes then possess the

methods of their ancestors. Examples can be the methods MapName, Legend, MappedArea, Scale,

Imprint and possibly other (Brewer, 2005) that were inherited by the class ThematicMapPage from the

superclass MapPage.

Based on experiments during the transformation with the standard feature Generate Protégé-OWL

Java Code we verified that all the generated Java classes are named equivalently to the original classes, as

defined in OWL. At the same time, the names of the generated Java interfaces are derived from the names of

Java classes.

We cannot forget the fact that from this way generated classes it is not possible to create their instances

directly by using the operator new. Protégé, in addition to all of Java interfaces and classes, creates even the so-

called factory class. Just this class is used to create objects, thus instances of individual classes. In the object-

oriented terminology of design patterns, this type of class is the implementation of the design pattern Factory.

In (Pecinovský, 2007), factory is described as a design pattern, which declares an interface with the method

for obtaining the object. However, it lets their descendants, i.e. overlapping versions of the declared method, to

make their own decision on the specific type of returned object. As indicated in (Dietrich, 2005), there are

abstract (AbstractFactory) and concrete (ConcreteFactory) classes. The Factory class name is one of the

possible parameters in the dialogue for generating the Java code (Chapter 6 Configuration of the procedure for

generating Java classes) and can be specified as required; otherwise the default name is used.

Important concepts that can be applied in the design of taxonomy of classes in OWL are a disjoint axiom

and covering axiom of a class. By means of the disjoint axiom, which is not expressed in OWL implicitly, the

disjoint of sibling classes is explicitly determined. By contrast, the disjoint of classes that have a common

ancestor, is expressed in Java implicitly. The transformation of the explicit expression of the disjoint axiom from

OWL to the Java code thus becomes meaningless. The simultaneous use of the disjoint axiom among sibling

classes and the set operation of union of sibling classes is applied in OWL to express the class covering axiom.

When converting OWL into the Java code, the information about using this axiom is lost.

Although the classes in OWL can have a defined cardinality constraint (Bechhofer, 2004; Athanasiadis,

2007), the fact is not reflected in any way in the generated Java classes in case of applying this type of constraint.

However, the situation can be solved, especially when the creating of instances of classes is permitted only

through the aforementioned class Factory. One way of the solution could be the implementation by means of

static attributes of those Java classes that have declared the cardinality constraint in OWL. In this case, however,

this functionality had to be contained in the Protégé editor. Another option is to create an own class that would

be able to obtain the knowledge from the source OWL file and subsequently process it in a needful way for

further use in the Java code.

 4 TRANSFORMATION OF PROPERTIES

Properties are important components of ontology, as they represent binary relations between two

individuals (Smith, 2004). The transformation of properties takes place in a different way for each of the three

types of properties (Patel-Schneider, 2004; Smith, 2004), which may occur in the OWL ontology:

 object properties,

 datatype properties,

39

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

 annotation properties.

The article, however, deals only with the transformation of object and datatype properties that are relevant

with regard to the further development of the knowledge-based application.

 4.1 Transformation of object properties

The function Generate Protégé-OWL Java Code will transform the object properties by creating

a set of declarations of methods in an interface and a set of definitions of methods in classes. Each declared

method of an interface and each method definition in a class - subject, describes the relation to another declared

class - object (Hong, 2008). The term subject thus corresponds to the concept D(f) property domain. The concept

object corresponds to the term H(f) property range.

An object property thus establishes a relation between a subject and an object. An example is the object

property isMapElementOf, which establishes the relation between the individuals of the class

MapElements and the individuals of the class MapPage. Then for any individual, such as Legend, of the

class MapElements a relation exists to any individual, for example ThematicMapPage, of the class

MapPage:

Legend isMapElementOf ThematicMapPage

When transforming the object property isMapElementOf, the transformational procedure Generate

Protégé-OWL Java Code created a set of declarations of methods in interfaces and a set of definitions of

methods in classes that are able to describe these relations.

If it is the object property isMapElementOf, characterized as functional, then in the Java code the

relation between the individual from the domain of definition and maximum one individual from the range of

definition was created by the transformation. Just as for datatype properties, also here the differences are valid in

the created methods depending on the choice of characteristics - functional, or inversely functional

characteristics (Fig. 2) or without these characteristics.

Fig. 2 Scheme of the object property hasMapElement inverse to the object property isMapElementOf

The selected illustration defines for this example the classes ThematicMap and

GeneralReferenceMapFeatureDataset. The class ThematicMap represents a thematic map, the

class GeneralReferenceMapFeatureDataset represents elements of the map base. If within this

ontology there are the following mutually inverse object properties:

ThematicMap hasGeneralReferenceMapFeature GeneralReferenceMapFeatureDataset

GeneralReferenceMapFeatureDataset isGeneralReferenceMapFeatureOf ThematicMap

then assuming that the object properties hasGeneralReferenceMapFeature and

isGeneralReferenceMapFeatureOf will not be identified in the ontology as functional and inverse

functional characteristics, the following interfaces will be created:

public interface ThematicMap extends Map {

Collection getHasGeneralReferenceMapFeature();

40

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

RDFProperty getHasGeneralReferenceMapFeatureProperty();

boolean hasHasGeneralReferenceMapFeature();

Iterator listHasGeneralReferenceMapFeature();

void addHasGeneralReferenceMapFeature(GeneralReferenceMapFeatureDataset

newHasGeneralReference MapFeature);

void removeHasGeneralReferenceMapFeature(GeneralReferenceMapFeatureDataset

oldHasGeneralReferenceMapFeature);

void setHasGeneralReferenceMapFeature(Collection newHasGeneralReferenceMapFeature);

}

public interface GeneralReferenceMapFeatureDataset extends DomainConcept {

Collection getIsGeneralReferenceMapFeatureOf();

RDFProperty getIsGeneralReferenceMapFeatureOfProperty();

boolean hasIsGeneralReferenceMapFeatureOf();

Iterator listIsGeneralReferenceMapFeatureOf();

void addIsGeneralReferenceMapFeatureOf(ThematicMap newIsGeneralReferenceMapFeatureOf);

void removeIsGeneralReferenceMapFeatureOf(ThematicMap oldIsGeneralReferenceMapFeatureOf);

void setIsGeneralReferenceMapFeatureOf(Collection newIsGeneralReferenceMapFeatureOf);

}

If the object property hasGeneralReferenceMapFeature has only the functional characteristic,

the object property isGeneralReferenceMapFeatureOf will automatically obtain the inverse functional

characteristic only. In this case, the object property GeneralReferenceMapFeatureDataset remains

unchanged, but the interface ThematicMap will undergo significant changes:

public interface ThematicMap extends Map {

GeneralReferenceMapFeatureDataset getHasGeneralReferenceMapFeature();

RDFProperty getHasGeneralReferenceMapFeatureProperty();

boolean hasHasGeneralReferenceMapFeature();

void setHasGeneralReferenceMapFeature(GeneralReferenceMapFeatureDataset

newHasGeneralReferenceMapFeature);

}

The last option takes into account the fact that both mentioned object properties were assigned functional

and inverse functional characteristics in the ontology. The generated interface ThematicMap will then be the

same as in the previous case and the interface GeneralReferenceMapFeatureDataset will look like

this:

public interface GeneralReferenceMapFeatureDataset extends DomainConcept {

ThematicMap getIsGeneralReferenceMapFeatureOf();

RDFProperty getIsGeneralReferenceMapFeatureOfProperty();

boolean hasIsGeneralReferenceMapFeatureOf();

void setIsGeneralReferenceMapFeatureOf(ThematicMap newIsGeneralReferenceMapFeatureOf);

}

 Object properties are therefore a very important component of the ontology, by the transformation of

which into the Java code only the part of knowledge describing horizontal relations between classes can be

transferred. The described conversion, however, failed to transfer the knowledge about constraints of object

properties, which allowed specifying in the ontology the semantic meaning of relations between individuals and

classes very precisely.

 4.2 Transformation of datatype properties

Datatype properties can be transformed directly into data types of the Java language with corresponding

data types (e.g., the properties of type xsd:String to the field of type String[]etc.) (Kalyanpur, 2004).

They can be considered as relations between the instances of classes and RDF literals (Huiji, 2009).

The data types of ontology datatype properties are transformed into data types in Java according to Tab.1.

41

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

Tab. 1 Corresponding data types in Java and OWL

Data type in OWL Data type in Java

boolean boolean

float float

int int

string String

date RDFSLiteral

dateTime RDFSLiteral

time RDFSLiteral

any Object

The significant differences in the generated Java code of these data attributes are caused by a switch, by

which the datatype property can be marked as a functional characteristic in the design of ontology. If the

datatype property is marked as functional, the generation of interfaces with the following declaration of methods

will occur during the transformation of the ontology (in the ontology, the existence of the datatype properties

named Size and int data type is expected):

int getSize();

RDFProperty getSizeProperty();

boolean hasSize();

void setSize(int newSize);

In the event that the datatype property is not designated as functional, the following declarations of

methods are created in the interface:

Collection getSize();

RDFProperty getSizeProperty();

boolean hasSize();

Iterator listSize();

void addSize(int newSize);

void removeSize(int oldSize);

void setSize(Collection newSize);

Additional programming works that will use the described declarations of methods will vary significantly.

The options of transforming datatype properties of classes of the OWL ontology to data types in the Java

code are very interesting from the viewpoint of knowledge sharing during the development of a knowledge-

based application. The creator of ontology has a way available how to describe declared classes for purposes of

subsequent development of an application in Java. The programmer obtains the names of datatype properties of

classes and their data types after converting the ontology into the Java code.

 5 TRANSFORMATION OF INDIVIDUALS

When transforming the ontology components, denoted as individual, we recorded the smallest loss of

information, expressing the datatype properties of individuals. The instances represented by individuals

themselves are not directly transformed into the Java programming code. Only the classes whose instances are

these individuals are transformed. These classes include then the methods developed on the basis of the used

datatype properties. The logic of the declarations of methods in interfaces and the definitions of methods in

classes is analogous to the transformation of datatype properties described in the preceding section. A key role is

played again by the characteristic of properties, known as functional. For example, by the transformation of the

datatype property dimension_height (of type float) of the individual A4_Portrait of the class

PaperFormat characterized as functional, the following declarations of methods in the interface will be

created:

float getDimension_height();

RDFProperty getDimension_heightProperty();

boolean hasDimension_height();

void setDimension_height(float newDimension_height);

42

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

If this property is not characterized as functional, then the generated declarations of methods will have the

following form:

Collection getDimension_height();

RDFProperty getDimension_heightProperty();

boolean hasDimension_height();

Iterator listDimension_height();

void addDimension_height(float newDimension_height);

void removeDimension_height(float oldDimension_height);

void setDimension_height(Collection newDimension_height);

The specific values of the datatype properties of selected individuals can be obtained programmatically

using the Java code. The following example demonstrates the possibility of obtaining the value

dimension_height of the individual A4_Portrait of the class PaperFormat.

...

File owl = new File("TcOntology.owl");

OWLModel model = ProtegeOWL.createJenaOWLModelFromURI(owl.toURI().toString());

TcFactory tcF = new TcFactory(model);

System.out.println(tcF.getPaperFormat("A4_Portrait").getDimension_height());

...

In the described example, the Java programmer has an option to obtain specific page dimensions of the

standard A4 size, oriented vertically. The prerequisite is, however, the presence of these specific values in the

source knowledge ontology.

 6 CONFIGURATION OF THE PROCEDURE FOR GENERATING JAVA CLASSES

The optional configuration item Java package can contain a Java package name. For example, the name

Cartography is then taken into account in the generated interfaces such as the command package Cartography

and in classes as package Cartography.impl. As the name suggests, another optional item Factory class name is

intended to indicate the name factory of a class.

If not specified, the default name MyFactory is used. Using the option Create abstract base files (e.g.

Person_) the next level (of inheritance) in interfaces and classes will be created. For example, according to Fig.

3, the interface public interface Map_ extends DomainConcept (the interface name is Map with underscore) is

created in this case. This interface contains declarations of methods. In addition to this interface, the interface

public interface Map extends Map_ is created too that does not declare any own methods any more. Similarly, it

is also in the case of classes.

Fig. 3 Configuration dialogue of parameters to generate the Java code

43

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

Collection can optionally be replaced, if necessary, by a Set. For that purpose the configuration parameter

named Return Set instead of Collection is used.

The last item, which can be affected by the form of resulting interfaces and classes, is the parameter

Include prefixes in generated Java names. If the name of a class in OWL starts with a prefix followed by a

colon, an interface and a class is created by default, named only by the name without any prefix and colon.

Using this option, the name of the interface and the class will consist of a prefix; the colon will be replaced with

underscore followed by the name of the interface or class itself.

 7 DISCUSSIONS

Creating software applications, which use from the beginning only a “manual” record of the Java code in

a traditional development environment, is currently still very popular. This established approach may seem faster

at first glance, as it does not take into account the time required to work with some of the tools for the visual

design of classes. On the contrary, a considerable disadvantage is the lack of a compact view of the structure of

classes, their inheritance, and types of relations. Another very substantial disadvantage of the “manual” record of

the Java code is obvious in case of a requirement for subsequent refactoring. Modern development environments

like Eclipse or NetBeans, however, allow programmers to solve this problem.

The use of visual design tools (e.g. Visual Paradigm for UML, ArgoUML, etc.) offers a compact view of

the structure of classes, their inheritance, types of relations. The advantage of the visual design is evident in the

situation where the designer returns to the project after a long time. Almost immediately he can see the current

status and bindings and can start editing. In practice, an analyst or a designer is very often in charge of the design

of classes, or their properties and declarations of methods. The code of methods or the definition of methods is

often up to the programmer. It is quite difficult to imagine that in a more complex project, which counts tens,

hundreds or even thousands of classes, the designer could keep the structure of classes in the code entered in

traditional development tools only.

The knowledge ontology designed and built with the intent to provide declarative knowledge to be shared

in the Java programming code of an upcoming application is a very interesting environment for designing classes

and their properties and mutual relations. The ontology editor Protégé 3.4.4 is the environment in which the

design of knowledge ontology is performed. The resulting ontology, prepared to be shared in the development of

a knowledge application, is a knowledge database, whose significant part can be transformed into Java interfaces

and classes. As shown by experiments, the automated transformation of ontology leads to loss of some

knowledge, which was recorded in the ontology by relevant constructs. The reason is probably the difference

between the OWL conception as an ontological language, where the set operations over classes are essential, and

the Java programming language, where these relations have no meaning in the object design. Java is not so strict

and lacks language constructs, which would be able to define these relations. It is then entirely at the

programmer's discretion and abilities in which way he will use these classes in his application; whether he will

not consider the relations of classes at all or create his own code, by means of which he will implement them in

some way.

Unlike the modern tools for visual design, the functionality of Protégé 3.4.4 is limited to visualizing the

knowledge ontology designed using one of the specialized tools (OntoViz, OLS2OWL, OntoSphere3D), which

can be used as a plug-in. These tools enable to visualize the ontology as a whole or to visualize selected

branches of the hierarchical structure. Using a series of parameters, it is possible to confine only to the view of

the hierarchical structure of taxonomy of classes or, conversely, to make visible object properties of classes (i.e.,

horizontal relations between classes). The view of some restrictions of object properties is provided in a simple

form. After possible editing an ontology component, it is possible to prepare the view again, this time for the

changed conditions.

The main importance of a knowledge ontology, as an environment for the formalization of declarative

knowledge, and the importance of an ontology editor (e.g. Protégé 3.4.4) lies in the ontology classification. Thus

it is possible to gain new knowledge derived from existing findings, which were deposited into the ontology

before classification. These knowledge ontologies and the editor of ontologies are also a suitable environment

for testing a designed ontology, where inconsistencies in the existing ontology can be automatically detected.

 8 CONCLUSIONS

Based on the up to now activities that we have made in connection with the design of an experimental

domain ontology of (thematic) cartography, we managed to realize the transformation of this ontology into Java

interfaces and classes. Fragments of the code in the Java language occurred, which contain a significant portion

of declarative knowledge listed in the original knowledge ontology. We tried also the possibility of further use of

these fragments of the Java code for the development of a knowledge-based application designed for the domain

of thematic cartography.

44

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

For the transformation of ontology into the Java code, we used a standard procedure from the menu of

Protégé 3.4.4 under the name Generate Protégé-OWL Java Code. As the functionality of the used transformation

procedure was not entirely obvious in generating the Java code based on the available sources of information, we

could not estimate the transformation losses in advance and to adapt the design of the experimental ontology.

The partial goal of the experiments was to verify the possible loss to be expected due to the transformation.

Based on the performed tests of the transformation course and results we gained valuable experience and could

adapt the approach to the ontology design so that the transformation is loss-making as few as possible. In

addition to changes in the ontology design, we verified also the behaviour of the transformation procedure for

different settings of transformation parameters. We managed to find that an important part of the declarative

knowledge of cartography can be expressed through the language OWL-DL so that this knowledge is then

automatically transferred into the generated Java code fragments.

Transforming all three types of ontology components (classes, properties and individuals), Java interfaces

and classes occurred, named in accordance with the URI that was used in the ontology. The created classes

respect the original hierarchy arrangement of the taxonomy of classes and inheritance as well. Similarly, the

object properties are transferred, preserving the hierarchical structure and inheritance in the Java code. Although

it is possible to define in the ontology datatype properties for classes namely by their name (by the URI

identifier), data type and range of values, only the name and data type of the properties is transmitted into the

Java code.

During the transformation of the ontology we recorded significantly smaller losses of declarative

knowledge when transferring the description of individuals of the ontology. In the Java code, individuals are

declared as instances of the class transferred from the original ontology. The programmer gets the possibility to

use quite easy specific values, describing the datatype properties of individuals of the ontology. An example is

the individual A4_Portrait of the class PaperFormat, for which the datatype properties

dimension_height and dimension_width of type float were stored in the ontology. The generated Java

classes and interfaces allow the programmer to work with a specific size of page of a map sheet - A4 format with

a vertical orientation.

The aim of subsequent experiments will be to verify the creation of a software application to integrate the

database of declarative knowledge and the database of procedural knowledge. At the same time, we will carry

out further experiments with the transformation of ontology into the Java program code in order to further reduce

the loss of the transmitted knowledge. For this purpose, we will try to use one of the alternative conversion tools,

whose application has a positive acclaim in publications in the field of knowledge engineering (Stevenson 2011).

It is therefore possible to search more information in the following period on the Web site

(http://cartoexpert.comuf.com/) of the GA CR project no. 205/09/1159.

ACKNOWLEDGEMENT

This material is part of the project “Intelligent System for Interactive Support of Thematic Map Design”

supported by the Czech Science Foundation under Grant No. 205/09/1159. The support of the Czech Science

Foundation is gratefully acknowledged.

REFERENCES

[1] APT, K. R.; HOWARD, A. B. WALKER, A.: Towards a Theory of Declarative Knowledge. Morgan

Kaufmann Publishers Inc. San Francisco, CA, USA
©
1988, ISBN: 0-934613-40-0, pp. 89-148.

[2] ATHANASIADIS, I. N.; VILLA, F.; RIZZOLI, A. E.: Ontologies, JavaBeans and Relational Databases

for enabling semantics programming. Computer Software and Applications Conference, 2007.

SOMPSAC 2007. 31st Annual International. 24-27 July 2007. Volume 2, pp. 341-346. ISSN: 0730-3157.

ISBN: 0-7695-2870-8.

[3] BAADER, F.; CALVANESE, D.; MCGUINNESS, D.; NARDI, D.; PATEL-SCHNEIDER, P. F. eds:

The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University

Press, 2003, ISBN: 9780521781763.

[4] BAADER, F.; HORROCKS, I.; SATTLER, U.: Chapter 3 Description Logics. In: Harmelen van Frank,

Vladimir Lifschitz, and Bruce Porter, eds., Handbook of Knowledge Representation. Elsevier, 2007.

Available online: (cit. 30 August 2010):

http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf

[5] BECHHOFER, S. et al.: OWL Web Ontology Language. Reference. W3C Recommendation 10 February

2004. Document Status Update, 12 November 2009. Available online: (cit. 2 June 2011):

http://www.w3.org/TR/owl-ref

[6] BREWER, C.A.: Designing Better Maps: a Guide for GIS Users. ESRI Press 2005

http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

45

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

[7] BRUS, J.; DOBEŠOVÁ, Z.; KAŇOK, J. (2009): Utilization of expert systems in thematic cartography.

In: proceedings International Conference on Intelligent Networking and Collaborative Systems INCoS

2009, Barcelona, Spain IEEE Computer Society Press, pp. 285-289. ISBN: 978-0-7695-3858-7.

[8] DENT, B.D.; TORGUSON, J.S.; HODLER, T.W.: Cartography: Thematic Map Design (6
th

 Ed.),

ISBN 0072943823, McGraw-Hill, August 2009, 204-224.

[9] DIETRICH, J.; ELGAR, C.: A Formal Description of Design Patterns Using OWL. Software Engineering

Conference, 2005. Proceedings. 2005 Australian. 29 March – 1 April 2005. Pages 243-250. ISSN: 1530-

0803. ISBN: 0-7695-2257-2.

[10] DOBEŠOVÁ, Z.; BRUS, J.: Coping with cartographical ontology. Conference Proceedings SGEM 2011,

11
th

 International Multidisciplinary Scientific GeoConfrence. STEF92 Technology Ltd., Sofia, Bulgaria,

pp. 377-384, ISSN 1314-2704, DOI:10.5593/sgem2011

[11] FRENZEL, CH.; BIJAN, P.; SATTLER, U.; BAUER, B.: Mooop – A Hybrid Integration of OWL and

Java. Lecture Notes in Business Information Processing. Volume 83 LNBIP, 2011, Pages 437-447. ISSN:

18651348. ISBN: 978-364222055-5.

[12] GENNARI, J.H.; MUSEN, M.A.; FERGERSON, R.W.; GROSSO, W.E.; CRUBEZY, M; ERIKSSON,

H.; NOY, N.F.; TU, S.W.: The Evolution of Protégé: An Environment for Knowledge-based System

Development. International Journal of Human Computer Studies. Volume 58, Issue 1, January 2003,

Pages 89-123. ISSN: 10715819.

[13] GOBIN, B.A.; SUBRAMANIAN, R.K.: Mapping Knowledge Model onto Java Codes. Proceedings of

World Academy of Science, Engineering and Technology. Volume 61, 2010, Pages 140-145. ISSN:

2010376X.

[14] GRUBER, T.R.: A Translation Approach to Portable Ontology Specifications, Knowledge Acquisition,

vol.5, issue 2, Academic Press Ltd., ISSN: 1042-8143, 199-220. June 1993.

[15] HONG, T.-P.; DONG, J.-S.; LIN, W.-Y.: An integrated OWL data mining and query system. Systems,

Man and Cybernetics, 2008. SMC 2008. IEEE International Conference. 12-15 Oct. 2008. Pages 251-255.

ISSN: 1062-922X. ISBN: 978-1-4244-2383-5.

[16] HORRIDGE, M.; KNUBLAUCH, H. et al.: A Practical Guide to Building OWL Ontologies Using the

Protégé-OWL Plugin and CO-ODE Tools (Edition 1.0). The University of Manchester, 27 August 2004.

Available online:

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/resources/ProtegeOWLTutorialP3_v1_0.pdf

[17] HUIJI, Z.; ZHILI, W.; ZHIPENG, G.; WENJING. L.: Design and implementation of mapping rules from

OWL to relational database. 2009 WRI World Congres and Computer Science and Information

Engineering, CSIE 2009. Vol. 4, 2009, Article number 5170964, Pages 71-75. ISBN: 978-076953507-4.

[18] HUSÁKOVÁ, M.: Znalostní technologie I. 2006, On-line (cit. September 2011):

http://lide.uhk.cz/fim/ucitel/fshusam2/lekarnicky/zt1/zt1_index.html

[19] IOSIFESCU-ENESCU, I.; HURNI, L.: Towards cartographic ontologies or "how computers learn

cartography", In: Proceedings 23
rd

 International Cartographic Conference, 4 - 10 August 2007, Moscow,

Russia.

[20] KALYANPUR, A.; PASTOR, D.J.; BATTLE, S.; PADGET, J.A.: Automatic mapping of OWL

ontologies into Java. In Maurer F.; Ruhe, G: Proceedings of the 17
th

 Int'l Conference on Software

Engineering {&} Knowledge Engineering (SEKE'2004), June 2004, pp. 98-103.

[21] KNUBLAUCH, H.; FERGERSON, R.W.; NOY, N.F.; MUSEN, M.A.: The Protégé OWL Plug-in: An

Open Development Environment for Semantic Web Applications. S.A. McIlraith et al. (Eds.): ISWC 2004,

LNCS 3298, pp. 229-243, 2004. Springer-Verlag Berlin Heidelberg 2004.

http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html

[22] MEPHAM, W.; GARDNER, S.: A Software Framework for Translating ECA Sequences from OWL-DL

into Java. Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT '08, IEEE/WIC/ACM

International Conference. 9-12 Dec. 2008. Volume 1, Pages 540-543. ISBN: 978-0-7695-3496-1.

[23] NOY, N.F.; MCGUINNESS, D.L.: Ontology Development 101: A Guide to Creating Your First

Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical

Informatics Technical Report SMI-2001-0880, March 2001. Available online (cit 25. 5. 2011):

http://protege.stanford.edu/publications/ontology_development/ontology101.pdf

http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html
file:///C:/Users/sh115/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/IVRTQ4WD/http
file:///C:/Users/sh115/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/IVRTQ4WD/http
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf

46

GeoScience Engineering Volume LVII (2011), No.4

http://gse.vsb.cz p. 35-46, ISSN 1802-5420

[24] PATEL-SCHNEIDER, P.F.; HAYES, P.; HORROCKS, I.: OWL Web Ontology Language Semantics and

Abstract Syntax. 10 February 2004. Available online: (cit. 20 Jul 2011):

http://www.w3.org/TR/2004/REC-owl-semantics-20040210.

[25] PECINOVSKÝ, R.: Návrhové vzory. Computer Press, a.s., 2007, ISBN: 978-80-251-1582-4.

[26] PEŇÁZ, T.: An Ontological Model Building for Application Use of Knowledge in Thematic Cartography

Domain. In: Sborník XXII. sjezdu České geografické společnosti. Ostrava, 31.8.-2.9.2010.

[27] PULESTON, C.; PARSIA, B.; CUNNINGHAM, J.; RECTOR, A.: Integrating object-oriented and

ontological representations: A case study in Java and OWL. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Volume 5318 LNCS, 2008, Pages 130-145. ISSN: 03029743. ISBN: 3540885633; 978-354088563-4.

http://ica.ign.fr/BDpubli/moscow2007/Regnauld-ICAWorkshop.pdf

[28] SLOCUM, T.A.; MCMASTER, R.B.; KESSLER, F.C.; HOWARD, H.H.: Thematic Cartography and

Geovisualization (3
rd

 Ed.). Prentice Hall, Upper Saddle River, NJ, 2009, ISBN 978-0-13-229834-6, 188-

210.

[29] SMITH, M.K.; WELTY, C.; MCGUINNESS, D.L.: OWL Web Ontology Language Guide. W3C

Recommendation 10 February 2004. Available online: (cit. 30 May 2011): http://www.w3.org/TR/owl-

guide/

[30] SMITH, R.A.: Designing cartographic ontology for use with expert systems. In proceedings: A special

joint symposium of ISPRS Technical Commission IV & AutoCarto in conjunction with ASPRS/CaGIS

2010 Fall Specialty Conference. November 15-19, 2010, Orlando, Florida.

[31] SVÁTEK, V.; ZAMAZAL, O.; PRESUTTI, V.: Ontology Naming Pattern Sauce for (Human and

Computer) Gourmets. In: Proceedings WOP 2009, Washington, 21. 10. 2009. ISSN 1613-0073, 171-178.

[32] STEVENSON, G.; DOBSON, S.: Sapphire: Generating Java runtime artefacts from OWL ontologies.

Lecture Notes in Business Information Processing. Volume 83 LNBIP, 2011, Pages 425-436. ISSN:

18651348. ISBN: 978-364222055-5.

[33] STUDER, R.; BENJAMINS, V.R.; FENSEL, D.: Knowledge Engineering: Principles and Methods. Data

and Knowledge Engineering. Volume 25, Issue 1-2, March 1998, pp. 161-197, ISSN: 0169023X.

[34] USCHOLD, M.; GRUNINGER, M.: Ontologies: principles, methods and applications. The Knowledge

Engineering Review, Cambridge University Press, Vol.11:2, 1996, pp 93-136. ISSN: 02698889.

RESUMÉ

Článek podává základní informace o možnostech využití znalostní ontologie pro usnadnění návrhu a

vývoje znalostního systému pro tematickou kartografii. Existující doménová ontologie pro tematickou

kartografii musí být pro tento účel tranformována na fragmenty Java kódu, který obsahuje deklarativní znalosti

přenesené z ontologie. Vytvořený kód, obsahující Java rozhraní a třídy, je využíván pro další vývoj znalostní

aplikace, nazvané Inteligentní systém pro interaktivní podporu tvorby tematických map. Výhodou popisovaného

řešení je skutečnost, že základní množina deklarativních znalostí, využívaných ve znalostní aplikaci, je

připravena v prostředí OWL editoru Protégé 3.4.4, který je vhodným grafickým prostředím pro návrh ontologie.

Ontologie zahrnující odborné pojmy, členění těchto pojmů do tříd na základě společných vlastností, dále

jejich hierarchické uspořádání do taxonomie, vyjádření vzájemných vertikálních a horizontálních vztahů mezi

třídami a jedinci, slouží jako databáze pro sdílení znalostí. V textu jsou naznačeny existující problémy, které

plynou z faktické neexistence ontologie pro doménu tematické kartografie, která by byla použitelná pro vývoj

znalostních aplikací. Článek vysvětluje potřebu existence doposud chybějící znalostní ontologie pro doménu

tematické kartografie. Doménová ontologie, použitá pro potřeby aktivit popsaných v článku, je vytvářena jako

experimentální. Požadavkem je následné využití ontologie jako databáze deklarativních znalostí pro potřeby

pilotního projektu. Článek shrnuje zkušenosti autorů, které získali při transformaci ontologie na Java kód a

formuluje některá doporučení pro konstrukci ontologie jejíž komponenty jsou lépe přenositelné do Java rozhraní

a tříd.

http://ica.ign.fr/BDpubli/moscow2007/Regnauld-ICAWorkshop.pdf
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf
http://www.graemestevenson.com/papers/stevenson2011sapphire.pdf

