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Abstract

The present paper is devoted to the use of the simplex method in the processing of results from geodetic
measurements as compared with the standard used method of least squares. Using the simplex method, a
minimization problem is usually solved in a standard tabular form by rearranging lines and columns in order to
find an optimal solution. The paper points out the simpler, more stable and more efficient way to solve a problem
of linear programming through a matrix of relations.

Abstrakt

PredloZeny prispevok je venovany pouzitiu simplexovej metody pri spracovani vysledkov geodetickych
merani v porovnani so tandardne pouzivanou metédou najmensich $tvorcov (MNS). Minimalizaény problém je
pri simplexovej metode zvylajne rieseny tabulkovou formou, preskupovanim stipcov a riadkovych operacii,
ktorych cielom je najdenie optimalneho rieSenia. V prispevku je poukazané na numericky nenaroénejsiu,
stabilnejsiu a efektivnejSiu cestu rieSenia problému linearneho programovania pomocou maticovych vztahov.
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1 INTRODUCTION

In geodetic practice, the least square method (LSM) ranks among standard used processing methods. This
method is based on the vector of corrections of the L2 norm which together with the L1 norm is most often
applied to the processing of results of geodetic measurements. However, a prerequisite for the proper functioning
of the LSM is a normal distribution of errors; otherwise the created probabilistic model is not correct. For this
reason, the geodetic practice started to use variant processing methods as well. Such methods include, for
example, robust estimation procedures that preserve their function in a certain neighbourhood of a normal
distribution, i.e. not fail in case of a moderate failure to comply with this requirement. The more the method is
resistant, the more it is robust. Several types of these methods are known, from the robust M-estimates
[51.[61,[71.[8] to linear programming methods to which undoubtedly the simplex method belongs. The LSM and
the simplex method will be demonstrated on two examples; on the examples of a regression line and a geodetic
network. In the first case, the models of a regression line and a geodetic network are loaded by the normal
distribution of measurements, in the other the line and the geodetic network are loaded by the value of an
experimental outlier.

2 METHOD OF LEAST SQUARES

The essence of this method lies in minimizing the sum of squares of deviations in measurements of the
behaviour of any quantity or physical phenomenon (3). The least square method is based on the condition of so-
called L2-norm; the norm is the number assigned to each n-dimensional vector of residual deviations
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v=(v,v,.Vv,) thatinsome sense characterizes its size [3] , [13] . In geodesy, the most commonly used types of
objective functions are as follows:

AT

p(v)=[g|vi|j —min. ie(Ln) (1)

Where:
p - a parameter defining a special type of an objective function,
v; — a vector of residual deviations (vector of corrections).

Assuming that p=2 (L2 norm), the objective function is as follows:

p(v)=(Euf ) =rin ©)

which leads to the least square method that leads under certain conditions to the most reliable estimates of
unknown quantities, and hence it is the most commonly used method in geodetic practice. The least square
method will be explained on a one-dimensional linear model, while all the estimation methods will be
demonstrated on the example of a regression line.

Let us assume that the following linear relationship exists between a variable y, variables X (Fig. 1) and a
random component u;:

Yi =B+ BXy+ B Xig+e o+ B Xy +U; Pori=12.-n
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Fig. 1 One-dimensional linear model
Where:

y i — dependent variables,
X1, X,, ... X — independent variables,

B o — the parameter indicating a value of the variable y provided that the variable X is equal to 0, the so-called
intercept

B - the regression coefficient defining the slope of the regression line,
u; — the random component.
Provided that we have n pairs of the independent variable X and the dependent variable Y

[y, 11, [x2, v21, -+ [xn, ¥] and are sufficiently convinced of the linear dependence, we can construct the line
that best describes this fact:

Y, =by+bx kdei=1,2---n........ vyrovnavajlca regresnd priamka 4
adjusting regression line
Where:
¥, —the adjusted one (theoretical value) of the dependent variable,
X;  — the dependent variable for the i-th observation,
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b, —the point estimate of the parameter f3
b —the point estimate of the parameter {3.

For residual deviations (in the geodesy vector of corrections) v=vy,v,,---,v,, the relationv; =y; -¥;
applies.

y-dependent variables
L
-
.

x-independent variables
Fig. 2 Residual deviations

Since the residual deviations may take a positive as well as negative value, they null each other. The
nullifying problem can be solved just by applying the LSM, the principle of which consists in the sum of squares
of deviations and not of the deviations themselves. The LSM formulation is then as follows:

é(yi_yi)z:é(yi_bo_blxi)z:Zn:(vi)Zerin' (5)

i=1

The minimum of a function of two variables can be found by placing its partial derivatives under both
variables (coefficients by a b,) equal to zero:

a@(yi —bo—blx,)zj

- 2[i(yi b, —blxi)(—xi)] _o,

a(b,) =t (6)
a(." (Yifbofblxi)zj n
6(b0) = Z(E(Yi _bo _blxi)(_l))zo'

By an appropriate algebraic transformation, we get a system of normal equations of two variables by
and by :

Z;)’i :nb0+b1§xi,

n n n (7)
Y% =h Y X + blzxiz-
i=1 i=1 i=1
For the variables by and b it is true:
Vi K XY 2% XX Y =2 %Y
bo — i=1 :1:1 |::1 i=1 b1 — |:1n |::] i=1 (8)
n Xiz—(ZXi )? nZXiZ—(ZXi )?
i=1 i=1 i=1 i=1

In the processing of geodetic measurements, methods of adjustment are used, by which the most probable
value of a quantity and its accuracy characteristics are determined. In determining the parameters of the
regression line, a mediating adjustment was used [1],[10],[9],[12], where the relationship between the measured
and unknown variables is expressed by the intermediating function of the searched unknown parameters, the so-
called estimates:

yi=li+v; = (01,05, 6)) ©)
For the vector of residues, the following is valid:
v=AO-I, (10)
leading to the Guss-Markov model:
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v=A0-I

(11)
2 C’_SQI
It applies for LSM:
p= Zn:(pivi)2 = Zn:vT Pv=min. P....maticavahovychkoeficienbv . (12)
i=1 i=1

matrix of weight coefficients

The minimum of the function of two variables can be found again by placing the partial derivatives of the

T
function (12) equal to zero 6(\:9;\/) and so getting the system of two equations, from which the searched

variables (estimates) can be determined:
(ATPAG) — (AT Pl ): 0— (N©) — (AT PI): 0, N - matica koeficienbvnormélnychrovnic ~ (13)
matrix of coefficients of normal equations

When using the LSM for searching the estimates, (indices), the following applies after adjusting the
parameters:

&= (ATPA) (ATPI)=N*(ATPI) . (14)

3 SIMPLEX METHOD

The simplex method is an iterative computational procedure that is used to find optimal solutions whereas
the objective (minimized) function must be in a canonical form. The minimization problem is typically solved
by means of methods of linear programming in a tabular form by rearranging columns and line unless the
objective function optimization is reached. The paper presents a simpler procedure of processing based on the
principle of matrix solution [2],[4]. This method will again be presented on the example of a regression line. The
model line was chosen not only because of its simplicity, but especially considering the fact that in the
processing of results from geodetic measurements there is a need, quite often, to determine the accuracy of the
measured length which can be expressed by the following relationship:

STD = appm + b ... modified form of regression line (15)

Where:
STD - the standard deviation of a measured length,

a - the parameter reflecting the impact of errors dependent on the measured length which take into account
the influence of the physical environment,

b - the parameter reflecting the impact of the errors independent of the measured length.
The functional relationship for the correction of the intermediate variable can be expressed as follows:

(n,1) nk k1

where v is the vector of corrections , A the matrix of coefficients, © is the vector of unknown parameters
(estimates), f is the vector of observations, n is a number of measurements, and k is a number of necessary
measurements (determined parameters). Within the search of an optimal solution, first the measured values f are
divided to the basic variables (needed measurements) and non-basic variables (r = n-k, r- a number of

redundant measurements).
Vo I _A<1> Q= f(_l) . (17)
Vo | [Ae fo

The vector f can be broken down as follows:

fo |_|lo | |lw| 18
e 2

In the case of observations with varying accuracy, the L1 norm can be derived from the objective function
L2 norm:
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pLZZVTPVZZl:Vinii :Zl:(vi\/p_ii)(vi\/p—ii):mn- (19)

To determine the individual elements of the weighting matrix P, the Cholesky decomposition is used:
P=SS". (20)

For the functional relationships of measured values, it applies:
SA@~SF . (21)
The relationship for the objective function for the L1 norm after the adjustment takes the form:
Py = (vecd(S)"|v] — min. (22)
Where vectd () is a column vector and the matrix |v| has the following form:

M= HV[L with elements on diagonal. (23)
For calculating the unknown parameters, it applies:
O=(Sp-Ap) *Spyfy =Ap Ty, (24)
Where S, is the diagonal matrix with dimensions (k x k).
The vector of corrections is divided into two parts:
Vg =y — A(l)(:) =fy —ApApfy =0, ..... residues are always equal 0 (25)
For the non-zero vector of corrections v, , it applies:
Vi =Ty ~Ap® =T ~ApAify . (26)

The assignment is solved by linear programming methods and is defined as follows:
Ty —
I X=pu, 27)
Ax=g.

where x>0, ris a minimizing funkcion also called ,,cost vector“ of size of t x 1, t=2k+2n, X is the vector of
non-negative variables, A is the matrix of coefficients.
In order to meet the condition x >0 for linear programming, the calculated estimates and the vector of
corrections is divided into two non-negative components:
O=5-y 6&,y>0,
v=y-r vy, r>0

(28)
vi=Y; akv; >0,r; =0,-v; =1, akv,; <0,y; =0,
v, =0 aky, =0,r, =0,|v,|=y,+r,
The target function (27) can be written in a matrix form as well:
)
|7
Sphw ~Swhw 1 0 -1 0 §SyYy _{Sa) fm}
S(Z)A(Z) _S(Z)A(Z) 01 0 - I_ S(Z)y(Z) S(Z) f(2)
SwZw
[S@Ze | (29)
C s
7
[OT o 1T 1T 1T] SwYa -4,
SoYe
Swly
S |
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where 1 is the all-ones vector (1" =[1, 1 --- 1]). The default simplex table has the following structure:

-|-=|:le ZT}Z
g A

0 o’ o' 1" 17 1 1
= Sy fy SwAy —SpAy | 0 -1 0 (30)
Sofay  SpAnm —SwuAp 0 | 0 -1

The calculation can be tabulated using the rearrangement operations of columns and lines; in the paper,
the procedure of transforming the simplex table using a “pivot” matrix K was used:

I o' 1
K=|0 SyAy 0T =K'T, (1)
0 S(Z)A(z) |

I” - the variable pivot matrix; its diagonal elements have a value +1, or -1 to meet the condition metv,y = 0.

The iterative process is carried out by multiplying the initial simplex table (30) with the pivot matrix in
inverse form. The structure of the transformed simplex table after the adjustment is as follows:

u, 0’ 0’ 1"+1'u, 1"-1"1" 1"-1"uy, 1"+17I°
T= Agf, [ -1 Ag 0 -AG 0 (32)
U, 0 0 U, 1" I -

Where the elements of the table can be determined according to the following relationship:
u, =178 A A fry =17 1S 5 iy,
U, =I'S,A;(SpAy) ™ (33)
u, = —I*S(Z)A(Z)A(’f) foy + I*S(z) f-

The objective function is transformed to minimize the function r so-called reduced ,,cost* vector (34)
which can be simplified in comparison with the original form, because its elements 1" —1"1" and 1" -1"U, have
avalue of O or 2.

M =[07 07,17 417U, 1T 1T 1T 1T U, 1T 17T (34)
The optimal solution is found when for all the elements of the vector r >0 applies which can be transformed to
the following condition:

4 EMPIRICAL DEMONSTRATION

In the following chapter, the method of least squares and the simplex method are presented on the
example of a regression line and a geodetic network. The regression line and the geodetic network in the first
example are loaded by a normal distribution of measurements; due to the investigation of the properties of the
used estimation methods, the line and the geodetic network are loaded by an experimental outlier before the
adjustment.

4.1 Application of estimation methods using the example of a regression line loaded by a
normal distribution of measurements

The regression line in this case is expressed by the equation of a rangefinder as follows:

STD = o, =2.ppmd +3mm]---rovnica regresnejpriamky, (36)
Where:
STD - a standard deviation of the measured length,
d - the measured length,

ppm - parts per million (10°).

The deterministic model of the regression line loaded by a normal distribution of measurements is
presented in a graphic form in Chyba! Nenalezen zdroj odkazii.. The experimental values shown in blue are
simulated in the MATLAB environment by the function normrnd (normal random numbers).
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Fig. 3 Deterministic model of the regression line loaded by normal distribution

Tab. 1 Final simplex table for the regression line loaded by a normal distribution of measurements

a|1]o/-1/0| 0625 | 0625 |0|0[0/ 00|00/ 0 0625 | -0.625 [0/0|0|00/0 0|0|] 19375
b|o 1/0/-1| 1125 | -0125 |0|0jo 0|0 0ojoj0| -1.125 | 0125 |0/ 0 0 |0/0j 0|0 0] 28125
v, | o lo/ojo]| 0875 | 0125 |-1]/0/0/ 0|0 0/0j 0| -0.875 | -0.125 |1/0 |0 0o/0o/ 0|0 o] 0.1875
vs | 0 lojojo| -075 025 |0|1/0/0|0]0/0/0| 075 0250 |0/-1]|0|0ojoj0 0 0] -0.5250
vs | 0 |o/o|o| -0.625 | 0375 |0|0/1/0/0 0/0j 0| 0625 | 0375 |0/0|-1/0/0/ 0|0 0| -0.9375
vs | 0 |o/ojo| 0500 | 0500 |0|0/0/-1/0 00/ 0| -0500 | -0500 |0/ 0|0 10/ 0|0 0] 0.0500
ve | 0 |0/ 0]0| 0375 | 0625 |0|0/0/0|-1/0/0/ 0| -0.375 | 0625 |0]0|0/0/1/0/|0 0] 0.1375
v» | 0 lojojo| 025 | 0750 |0 /0jo/0|o0|1/0/ 0| 0250 | 0750 (0|0 |0 0/0/-1|0 |0 -0.1750
vs | 0 |0o/o|0| -0125 | -0.875 |0|0/0j0 |0 0/1/0| 0125 | 0875 |0/ 0|0 0/0/ 0 |-1/0] -0.5875
vie] 0 lololo| -0125 | 1125 | 0/0/0/ 0 0/0/0 -1 0125 | -1.125 0/ 0|0 /0/0/0 0 1] 02875
r]olololol 1125 | 0875 |2/0/0/2 2/0/0/2| 0875 | 1125 [0/ 2|2 00 2|2 |0 -2.8875

Tab. 2 Results of adjustment of the regression line loaded by a normal distribution of the LSM and L1 norm

Theoretical line LSM L1
M. No. d oy o4 € v A v
exp.. detrm.
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
1. 200.00 3.20 3.40 0.20 0.2473 -0.05 0.0000
2. 400.00 3.40 3.80 0.40 0.4145 -0.01 -0.1875
3. 600.00 4.50 4.20 -0.30 -0.3182 0.02 0.5250
4. 800.00 5.30 4.60 -0.70 -0.7509 0.05 0.9375
5. 1000.00 4.70 5.00 0.30 0.2164 0.08 -0.0500
6. 1200.00 5.00 5.40 0.40 0.2836 0.12 -0.1375
7. 1400.00 5.70 5.80 0.10 -0.0491 0.15 0.1750
8. 1600.00 6.50 6.20 -0.30 -0.4818 0.18 0.5875
9. 1800.00 6.30 6.60 0.30 0.0855 0.21 0.0000
10. 2000.00 6.40 7.00 0.60 0.3527 0.25 -0.2875
£E=0q —O¢g » A=~V (37)

determ.  exp..

Parameters of regression line:

Deterministic form of line y=3.0[mm]+ 2.0*ppm*d

Parameters of line estimated by LSM y=3.1[mm]+ 1.8*ppm*d

Parameters of line estimated by Hampel method y=2.8[mm]+ 1.9*ppm*d
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Fig. 4 Graphical interpretation of LSM and L1 norms on the example of the regression line loaded by normal
distribution

From the results of the adjustment (Tab. 2) of such proposed regression line, it is evident that in case of
the load of the line by normal distribution of measurements neither the LSM, nor the simplex method in the set
of measured data revealed any outlier (“which go beyond”) value and the results of the adjustment are very
similar. The graph of the regression line behaviour after the adjustment by individual estimate procedures is
presented in Chyba! Nenalezen zdroj odkazi..

4.2 Application of estimation methods using the example of the regression line loaded by an
experimental outlier

With regard to the fact that the present contribution is devoted to the issue of estimation methods which
allow to reveal so-called outlier measurements in the set of measured data, and for which the arithmetic mean
was not selected as the centrality parameter, the regression line was deliberately loaded with the only outlier
(Fig. 5) in order to track the performance of such methods. In the figure, the experimental values are shown in
blue; the line behaviour in deterministic form is shown in red.

f f
| |
| |

—E— STD=3[mm]* 2ppm*d
© _outlier points

STD[mm]
\

0 200 400 600 800 1000 1200 1400 1600 1800 2000
dim]

Fig. 5 Deterministic form of the regression line loaded by an experimental outlier

Such modified regression line was adjusted first by the method of least squares, and consequently by the simplex
method. The results of adjustments of the regression line loaded by an experimental outlier after the adjustment
by the LSM and the simplex method are interpreted in Tab. 4 and in Fig. 6.
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lex table for the example of the regression line loaded by an experimental outlier

a (1{0[-1|0| -0.8333 | 0.8333 |0|0f0jO|0O(O[0|O| 0.8333 | -0.8333 |0|0({0|0|0|0|0O|0] 2,0833
b [0[1]0|-1| 1.1667 | -0.1667 |0|0[0j0|0[0[0]0O| -1.1667 | 0.1667 0| 0[{0|0|0j0|0|0] 2,7833
v, [0[0j]O|0| 0.8333 | 0.1667 |-1|0[0/0|0[0[0|0O| -0.8333 | -0.1667 |1|0{0]0|0|0|0|0] 0.2167
v, [0[0|0 |0 -0.6667 | -0.3333 |0(1/0/0|0[0[0|0O| 0.6667 | 0.3333 |0|-1{0]0]|0|0 |0 |0] 0.4667
v, [0/0]0 |0 -0.5000 | -0.5000 |0 |0Of1/0|0[0[0jO| 0.5000 | 0.5000 |0|0(-1]|0|0j0|0]0O] 0.8500
vs [0/0j]O 0| 0.3333 | 0.6667 |00[0|-1|0(0[0]0O| -0.3333 | -0.6667 |0|0[0|1|0|0|0|0] 0.1667
Vs [0/0jO 0| 0.1667 | 0.8333 |0|0[0J0|-1[0[0|0O| -0.1667 | -0.8333 |0|0[0|0|1]0|0|0] 0.2833
Ve [0/0JO 0| 0.1667 | -1.1667 |0|0[0J0O|0f1]0|0| -0.1667 | 1.1667 |0|0[0|0|0|-1|/0|0] 0.3833
Vo [0/0jO 0| 0.3333 | -1.3333 |0|0[0j0O|0f0f1]0| -0.3333 | 1.3333 |0/ 0[{0]0]|0|0[-1]0] 2.9667
v1010]10]0]0| -0.5000 | 1.5000 |0[0j0j0]0|0J0]-1] 0.5000 | -1.5000 |0{0[0]0j0j0|0O]1] 0.5500
r 10/0f0101 08333 | 11667 1210[0/21210[0j21 11667 | 08333 101212101012 {2 10] -5.8833
Tab. 4 Comparison of the LSM and the L1 norm on the example of the regression line loaded by an
experimental outlier
Theoretical line LSM L1
), i d o4 o € v A %
exp. deter.
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
1 200.00 3.20 3.40 0.20 -0.0436 0.24 0.0000
2. 400.00 3.40 3.80 0.40 0.2594 0.14 0.2167
3. 600.00 450 4.20 -0.30 -0.3376 0.04 -0.4667
4. 800.00 5.30 4.60 -0.70 -0.6345 -0.07 -0.8500
5. 1000.00 4.70 5.00 0.30 0.4685 -0.17 0.1667
6. 1200.00 5.00 5.40 0.40 0.6715 -0.27 0.2833
7. 1400.00 5.70 5.80 0.10 0.4745 -0.37 0.0000
8. 1600.00 6.50 6.20 -0.30 0.1776 -0.48 -0.3833
9. 1800.00 9.50 6.60 -2.90 -2.3194 -0.58 -2.9667
10. 2000.00 6.40 7.00 0.60 1.2836 -0.68 0.5500
Parameters of regression line:
Deterministic form of line y=3.0[mm]+ 2.0*ppm*d
Parameters of line estimated by LSM y=2.7[mm]+ 2.5*ppm*d
Parameters of line estimated by L1 y=2.1[mm]+ 2.8*ppm*d
10 ‘ f ; f
—H8— STD=3[mm]* 2ppm*d
| © outlier ponts
8l regression line by LSM
—__regression line by L1
7 =
6 ~ /
T —
g s g [J/{r
4
=5

0 200 400 600

800 1000 1200 1400 1600 1800 2000

d[m]

Fig. 6 10 Graphic interpretation of the LSM and the L1 norm (simplex method) on the example of the regression
line loaded by an experimental outlier

GeoScience Engineering

From the results of the adjustment through the LSM, it is evident that in this case the LSM found an
outlier measurement at a measured length of 1800 m and just this measurement was assigned the greatest value
of correction after the adjustment. Comparing the two estimation procedures, we concluded that both methods
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arrive at a mutually similar results and the simplex method found an outlier measurement at a measured length of
1800 m.

4.3 Adjustment of a geodetic network loaded by a normal distribution of measurements

Characteristics of the presented estimation methods will also be investigated on the example of a geodetic
network. This is a simulated geodetic network where the point No. 6 is the point being determined whose
position is defined by triangulation (angular) measurements (Fig. 7) . Such a network model was proposed on the
grounds that the geodetic practice is often encountered with the task when it is necessary to determine the
location of an inaccessible point which can be done just through triangulation measurements. The geodetic
network will be processed as a binding network by both network estimative procedures, first by a normal
distribution of measurements, and consequently after it is loaded by outlier experimental values.

4
Uss6. Usgg
3
Y436
U632 6, U654 5
111‘5'6
Ufﬁ,Zjﬁ'
u
621
2 Y615
U216
1
20 0 20 40 60 8 10m

Fig. 7 Structure of the geodetic network loaded by a normal distribution of measurements

Tab. 1 Results of adjustment of the geodetic network loaded by a hormal distribution through the LSM

L-S-P I~ | n v~ \ vCh p T.Baarda T.Pope s(v) s(1™) r*
angle [g] [g] a] [cc] [cc] [cc] —B- == [cc]
2-1-6 31.04550 | 31.04500 31.04559 | 4.95 5.94 5.94 | 1.0000 1.58 1.43 3.76 | 415 | 0.88
6-1-5 86.04331 86.04290 86.04321 4.08 3.09 3.09 | 1.0000 0.82 0.74 3.76 | 415 | 0.88
3-2-6 57.35031 57.35090 57.35053 | -5.90 | -3.72 | -3.72 | 1.0000 1.17 1.06 3.18 | 351 | 0.63
6-2-1 82.30387 82.30390 82.30366 | -0.26 | -2.45 | -2.45 | 1.0000 0.77 0.70 3.18 | 351 | 0.63
4-3-6 46.63242 46.63190 | 46.63229 5.21 3.95 3.95 | 1.0000 1.18 1.07 3.33 | 3.68 | 0.69
6-3-2 43.61620 | 43.61630 | 43.61633 | -0.98 | 0.29 0.29 | 1.0000 0.09 0.08 3.33 | 3.68 | 0.69
5-4-6 94.62331 94.62290 94.62322 411 3.15 3.15 | 1.0000 0.84 0.76 3.74 | 413 | 0.88
6-4-3 32.88348 32.88290 32.88358 5.81 6.76 6.76 | 1.0000 1.81 1.64 3.74 | 413 | 088
1-5-6 71.37301 71.37290 71.37303 1.07 1.28 1.28 | 1.0000 0.33 0.30 3.83 | 423 | 092
6-5-4 54.12859 54.12900 54.12857 | -4.08 | -4.29 | -4.29 | 1.0000 1.12 1.01 3.83 | 423 | 0.92

Legend:

Significance level alpha = 0.050 B - Baarda Data snooping ( N(0,1)) = 2.800

Basic standard deviation of angle mesur. = 4.000 [cc]  Number of critical measure. (Baarda data-snooping) = 0

Estimate of the accuracy of angle m. (MINQUE) = 4.417 [cc] P - Pope Tau-test (Tau(r, 1-alfa0/2) = 2.361

Posterior standard deviation = 4.417[cc]  Number of critical measure. Pope Tau-test) =0

Critical limit sO_posterior = 5569 [cc] Adjustment efficiency = 0.800

sO_poster~2/s0_aprior’2 = 1.219 Redundancy = 8.000

The results of adjustment of thus proposed geodetic network by the method of least squares are presented
in

Tab. 1. In the case of the network loaded by a normal distribution of measurements, the standard
deviation of the measured angle takes a value of 4.000 cc. The accuracy of the angular measurement 4.417
cc was estimated by the method MINQUE [10],[12]. The fact whether the set of measured data was
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infiltrated by an outlier measurement was studied using two statistical tests Baarda Data snooping test

and the Pope Tau test. From the results of processing (

Tab. 1), it is clear that not only the LSM did not find outlier measurements, but none of the measurements
exceeded the critical value of both test statistics. Due to the investigation of the properties of alternative
estimation methods, the network was adjusted again by the simplex method (

Tab. 2).

Tab. 2 Rresulting simplex table in processing the geodetic network loaded by a normal distribution

dXe~ ]1/0)-1)0] 003 |-008 |0|0|0]0]0]0]0|O|-0.032]| 0.08 |[0/0|0|0|0O|0O|O)| 0] 0.1078
dYe~ ]O|1/0|-1]-0.069 | -0042 | 0| 0|0| 0] 0|0| 0|0 0069 | 0.042 |[0/0|0|0|0O|0|0| 0O |-0.4497
Vueas J0/0/0 ) 0] 0109 | 0591 |-1/0/0|0]0]|0]0|0O|-0109|-0591|1/0[{0|0|0|0|0O)| 0] 6.1698
| Vueas |00 00 -0109 | -0591|0|-1/0{0|0|0]|0|0| 0109 0591 |[0/1/0/0]|0|/0|0] 0| 28602
| Vugzy |00 0|0 1 0 0/0/1]/0]0]0]O0]O -1 0 0/{0|-1/0]|0]0|0]| 0| 6.1600
| Vuaze) |00 010 0 -1 0j]0|0[-1/0]|0]0]O 0 1 0/0]/0|1/0/0|0)| 0 | 4.2300
Vusae |00 0 ) 0| -056 | 0223 [0]0|/0/0|-1/0]0|0| 0566 |-0223 |0/0|0|0]|1]0]|0] 0] 0.9912
Vuea3z |0[0[ 0 ) 0] 0566 | -0223 | 0|00/ 0|0 |-1]0)0]-0566| 0223 |0/0|/0|0|0|1]0] 0| 89288
Vuase 100/ 0|0 -0193 | 0499 |0/ 0|0|0]0|0|-1]0] 0193 | -0499 |0|/0|0|0|0|0O|1|0] 04197
Vuess 100/ 0|0 -0193 | 0499 |0/ 0|0|0]0|0]0|1] 0193 |-0499 |[0/0|0|0|0|0|O|-1] 3.4297
r 0/0/0/0) 0386 | 1.001 | 2|2 /0]|2]2 2 /0] 1614 | 0999 1 0/0/2 |0|0|0|0]| 2 |-33.1894

Tab. 3 Estimates of the coordinates of the point No. 6 from measurements loaded by a normal distribution

. Y axa ay» Xn YA
Method [m] [m] [mm] [mm] [m] [m]
LSM -0.0374 -0.2039 1167044.50196 438102.86080
1167044.502 438102.861
L1 0.1078 -0.4497 1167044.50211 438102.86055
Tab. 4 Comparing corrections in the geodetic network non-loaded by outlier measurements
Angle e ! Ve LgM Sim\;)lex
Theoretical value of angle Measured value of angle Actual measurement error
L-S-P [0] [d] [ce] [cc] [ce]
2-1-6 31.04550 31.04500 4.95 5.94 6.17
6-1-5 86.04331 86.04290 4.08 3.09 2.86
3-2-6 57.35031 57.35090 -5.90 -3.72 0.00
6-2-1 82.30387 82.30390 -0.26 -2.45 -6.16
4-3-6 46.63242 46.63190 5.21 3.95 4.23
6-3-2 43.61620 43.61630 -0.98 0.29 0.00
5-4-6 94.62331 94.62290 4.11 3.15 0.99
6-4-3 32.88348 32.88290 5.81 6.76 8.93
1-5-6 71.37301 71.37290 1.07 1.28 0.42
6-5-4 54.12859 54.12900 -4.08 -4.29 -3.43

The graphical interpretation of the results of adjustment (Fig. 8) is presented through the confidence

ellipses constructed at 99% and 95% probability.
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Fig. 8 Graphical interpretation of the estimation methods for adjusting the geodetic network loaded by a normal
distribution of measurements

4.4 The adjustment of the geodetic network loaded by a normal distribution of measurements

To investigate the properties of alternative estimation methods enabling to detect outlier measurements
that can infiltrate such a set of measured data, e.g. by a supraliminal influence of the physical
environment, two measured angles were loaded in the proposed geodetic network prior to the processing
(Fig. 9), once by five times the mean error of the measured angle, once by six times the estimated error.
Such proposed geodetic network was again adjusted as the binding network by the (MNS) (

Tab. 5) and by the simplex method (
Tab. 7).
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Fig. 9 Structure of the geodetic network loaded by two outlier measurements

Tab. 5 Results of adjustment of the geodetic network loaded by outlier measurements through the LSM

33

L-S-P I~ | n v~ v vCA p T.Baarda T.Pope s(v) s(I™) r* f
angle [9] [a] [a] [ce] [ce] [ce] -B- =P= [cc]

2-1-6 31.04550 | 31.04790 31.04581 -2400 |-20.86 |-20.86 | 1.0000 5.55 B 202 |376 |10.33 |0.88 |66.0
6-1-5 86.04331 | 86.04290 86.04299 4.08 0.94 0.94 1.0000 0.25 0.09 |376 |10.33 |0.88 |66.0
3-2-6 57.35031 | 57.35090 57.34998 -5.90 -9.24 -9.24 1.0000 291B 1.06 [3.18 | 872 |0.63 |39.2
6-2-1 82.30387 | 82.30587 82.30421 -20.00 |-16.66 |-16.66 | 1.0000 525B 191 [318 | 872 |0.63 |39.2
4-3-6 46.63242 | 46.63190 46.63183 5.21 -0.71 -0.71 1.0000 0.21 008 [333 |914 |069 |446
6-3-2 43.61620 | 43.61630 43.61679 -0.98 4.94 4.94 1.0000 1.48 054 |333 | 914 |069 |44.6
5-4-6 94.62331 | 94.62290 94.62363 411 7.32 7.32 1.0000 1.95 071 |374 |10.28 |0.88 |64.7
6-4-3 32.88348 | 32.88290 32.88316 5.81 2.60 2.60 1.0000 0.70 025 |374 |10.28 |0.88 |64.7
1-5-6 71.37301 | 71.37290 71.37337 1.07 4.67 4.67 1.0000 1.22 0.44 |383 |1052 |092 |711
6-5-4 54.12859 | 54.12900 54.12823 -4.08 -7.68 -7.68 1.0000 2.01 073 |383 |1052 |092 |711
Significance level alpha = 0.050 B - Baarda Data snooping ( N(0,1)) = 2.800

Basic standard deviation of angular meas. = 4.000 [cc] Number of critical meas. (Baarda) =3

Estimate of precision of angular meas. (MINQUE) = 10.984 [cc] P - Pope Tau-test (Tau(r, 1-alfa0/2) = 2.361
Posterior standard deviation = 10.984 [cc] Number of critical meas. (Pope Tau-test) = 0

Critical limit sO_posterior = 5.569 [cc] Redundancy = 0.800
sO_poster"2/s0_aprior"2 = 7.541

Crit. ratio sO_poster"2/s0_aprior*2 = 1.938

Results of the adjustment of the geodetic network show that the LSM found two outliers just on the
measured angles loaded by multiples of the median error of the measured angle. Infiltrating outlier
measurements to the set of the processed data, however, was also studied through the Baarda Snooping test and

the Pope test. From
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Tab. 5, it is evident that the Baard test found three critical measurements, while the Pope test did not find

any critical test measurement. For this reason, the simplex method (

Tab. 7) was used for the processing of the geodetic network.

Tab. 6 Estimates of the point No. 6 coordinates from measurements loaded by a normal distribution

Xe Y° dxn dy~ XA 4
Method [m] [m] [mm] [mm] [m] [m]
LSM -0.6136 -0.0144 1167044.50139 438102.86099
1167044.502 438102.861
L1 -0.2529 -0.6252 116704450175 438102.86037
Tab. 7 Resulting simplex table in processing the geodetic network loaded by outlier measurements
dxé~|1/0|-1| 0| 0.032 | 0.085 |0O|0O|O/O|0O0|O|0|0O|-0.032|-008|0|0|0|0|0|0O|O| O] -0.2529
dvyé~|0(1/0|-1|-0069| 0042 |O|0O|0O|0O|0|0|0|0O| 0069 |-0042|0|0|0|0/0|0|0O]| 0| -0.6252
Vue1e|0/0/0)0|-0109| 0591 |1{0|0{0|0|0|0|0| 0109 |-0591|-1/0|0|0|0|0|0|O0 |20.3326
Vues | 0 0 -0.109 | 0591 |[0|-1/0|{0| 0|0 | 0|0 0.209 |-0.591 1/0(0|0|0/0|0| 0.3626
Vue2n|0(0[0 |0 1 0 ojo0f1/0/0|0|0]O -1 0 0(0[-1/0|/0|0|0| 0 | 25.8600
Vues2 000 |0 0 -1 |0j0|0|-1/0|0|0]O 0 1 0/0/0|1/0|0|0]| 0| 4.2300
Vusae |00 0|0 -0566|-0223|0|{0|0[{0|-1]|0 0| 0566 | 0223 |0|0|O0 1 0| 1.9341
Vuea43]0/0[0 0| 0566 | 0223 |0/0|0{0|0|-1/0|0|-0566|-0223|0(0(0|0(0/1/0 0| 7.9859
Vuase|0/0[0 |0 |-0193|-0499|0|0|0{0|0|0|-1|/0| 0193|049 (0|00 |0(00 /1 O 25317
Vuesa]0(0[0 0 |-0193|-0499|0|0|0{0|0|0|0|1|0193 |0499 0|0(0|0(00 0 -1| 55417
r 0 0604 | 1818 |02 (0|2|2|2|2 |0 1.396 | 0.182 | 2 2/0/0(0|0| 2 |-68.7786

The resulting simplex table shows that in the processing of geodetic network using this method, the
optimal solution was found, since all elements of the vector r are positive and the table of resulting corrections (

Tab. 8) points out to the fact that this method identified two outlier measurement at the points where the
angles are loaded by multiples of the standard deviation of the measured angle. The graphical interpretation of
the results obtained is shown through the confidence ellipses constructed at 95% and 99% probability (Fig. 10).

Tab. 8 Comparin

g the corrections in the geodetic network loaded by outlier measurements

I~ | v~ v v
Angle Theoretical value of Measured value of | Actual measurement LSM Simplex
angle angle error
L-S-P [9] [9] [cc] [cc] [cc]
2-1-6 31.04550 31.04790 -24.00 -20.86 -20.33
6-1-5 86.04331 86.04290 4.08 0.94 0.36
3-2-6 57.35031 57.35090 -5.90 -9.24 0.00
6-2-1 82.30387 82.30587 -20.00 -16.66 -25.86
4-3-6 46.63242 46.63190 5.21 -0.71 0.00
6-3-2 43.61620 43.61630 -0.98 4.94 4,23
5-4-6 94.62331 94.62290 411 7.32 1.93
6-4-3 32.88348 32.88290 5.81 2.60 7.99
1-5-6 71.37301 71.37290 1.07 4.67 2.53
6-5-4 54.,12859 54,12900 -4.08 -7.68 -5.54
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Fig. 10 Graphical interpretation of the estimation methods for adjusting the geodetic network loaded by outlier
measurements

5 CONCLUSIONS

The estimation methods that were used and applied to the example of a regression line and a geodetic
network showed the mutual tightness of the achievements. In the present contribution, simple but all the more
illustrating examples demonstrating the positive attributes of alternative estimation methods were deliberately
chosen. Among the many such methods published in foreign literature [8], the simplex method was presented in
this paper which also allows to solve the problem of infiltration of outlier measurements to the set of processed
data. The minimization problem of the L1-norm is normally solved using a linear programming tabular form;
however, the paper presents a simpler and more efficient way to solve a linear programming problem using
matrix relations.
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RESUME

Zaverom si dovol'ujeme konstatovat’, Ze pouzitie alternativnych odhadovacich metéd ma  nesporne

svoje opodstatnenie, pretoze geodetické merania sa nezriedka realizuju v naroénych a neStandardnych
podmienkach, ktoré mozu byt pri¢inou skuto¢nosti, Ze do siboru meranych dat prenikni odl'ahlé merania.
Z opakovanych merani na stanovisku a z obmedzenych doplnkovych fyzikalnych merani teploty, tlaku a vlhkosti
ma geodet len obmedzent moznost’ posudit’, ¢i a do akej miery sa do suborov meranych geometrickych veli¢in
infiltroval vplyv predovietkym tepelného pol'a, pripadne inych rusivych fenoménov, o ktorom mdze prijat
zavery zvacSa az na zaklade Statistického spracovania po navrate z terénu. Pokial’ sa jedna o jedno meranie, je
identifikovatelné napr. Statistickymi testami, v pripade, Ze subor je kontaminovany viacerymi odlahlymi
meraniami, Statistické testy nemusia byt uspe$né. V tomto pripade alternativne odhadovacie metody, kde
nesporne patria aj metody linearneho programovania dokazu identifikovat’ tito mnozinu a potlacit’ ich vplyv na
vysledky vyrovnania.
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